Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gait Posture ; 44: 161-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27004651

ABSTRACT

Exercise videogames (exergames) are gaining popularity as tools for improving balance ability in older adults, yet few exergames are suitable for home-based use. The purpose of the current pilot study was to examine the effects of a 6-week unsupervised home-based exergaming training program on balance performance. Ten community dwelling healthy older adults (age: 75.9 ± 7.2 years) played a newly developed ice skating exergame for six weeks at home. In the game, the speed and direction of a virtual ice skater on a frozen canal were controlled using lateral weight shifts, which were captured using Kinect. Sway characteristics during quiet standing in eyes open (EO), eyes closed (EC) and dual task (DT) conditions were assessed in time and frequency domain before, and after two, four and six weeks of training. Balance was also evaluated using the narrow ridge balance test (NRBT). Multilevel modeling was applied to examine changes in balance ability. Participants played 631 (± 124)min over the intervention period and no subjects dropped out. Balance in terms of sway characteristics improved on average by 17.4% (EO) and 23.3% (EC) after six weeks of training (p<0.05). Differences in rate of improvement (p<0.05) were observed between participants. No intervention effects were found for quiet standing in DT conditions and on the NRBT. In conclusion, the pilot study showed that unsupervised home-based exergaming is feasible in community dwelling older adults, but also that participants do not benefit equally from the program, thereby emphasizing the need for more personalized exergame training programs.


Subject(s)
Postural Balance , Skating , Video Games , Accidental Falls/prevention & control , Aged , Female , Humans , Male , Pilot Projects
2.
Phys Rev Lett ; 105(21): 212503, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231295

ABSTRACT

The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (α, α'γ) coincidence method at Eα=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (α, α'γ) as well as in (γ, γ') reactions and a group of states at higher energies which is only excited in (γ, γ') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance.

3.
Phys Rev Lett ; 97(17): 172502, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17155468

ABSTRACT

A concentration of electric-dipole excitations below the particle threshold, which is frequently denoted as the pygmy dipole resonance, has been studied in the semimagic nucleus 140Ce in (alpha, alpha' gamma) experiments at E alpha = 136 MeV. The technique of alpha-gamma coincidence experiments allows the separation of E1 excitations from states of other multipolarities in the same energy region and provides an excellent energy resolution to allow a detailed analysis for each state. The experimental results show that the PDR splits into two parts with different nuclear structure: one part which is excited in (alpha, alpha' gamma) as well as (gamma, gamma') experiments and one part which is excited only in (gamma, gamma').

4.
Phys Rev Lett ; 97(6): 062502, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-17026166

ABSTRACT

A new experimental approach to the famous problem of the anomalously slow Gamow-Teller (GT) transitions in the beta decay of the A=14 multiplet is presented. The GT strength distributions to excited states in 14C and 14O were studied in high-resolution (d,2He) and (3He,t) charge-exchange reactions on 14N. No-core shell-model calculations capable of reproducing the suppression of the beta decays predict a selective excitation of Jpi=2+ states. The experimental confirmation represents a validation of the assumptions about the underlying structure of the 14N ground state wave function. However, the fragmentation of the GT strength over three 2+ final states remains a fundamental issue not explained by the present no-core shell model using a 6homega model space, suggesting possibly the need to include cluster structure in these light nuclei in a consistent way.

5.
Phys Rev Lett ; 86(26 Pt 1): 5862-5, 2001 Jun 25.
Article in English | MEDLINE | ID: mdl-11415380

ABSTRACT

A series of measurements have been performed at KVI to obtain the vector analyzing power A(y) of the (2)H(p-->,pd) reaction as a function of incident beam energy at energies of 120, 135, 150, and 170 MeV. For all these measurements, a range of theta(c.m.) from 30 degrees to 170 degrees has been covered. The purpose of these investigations is to observe possible spin-dependent effects beyond two-nucleon forces. When compared to the predictions of Faddeev calculations, based on two-nucleon forces only, significant deviations are observed at all energies and at center-of-mass angles between 70 degrees and 130 degrees. The addition of present-day three-nucleon forces does not improve the description of the data, demonstrating the still insufficient understanding of the properties of three-nucleon systems.

6.
Z Naturforsch C J Biosci ; 52(5-6): 364-72, 1997.
Article in English | MEDLINE | ID: mdl-9232893

ABSTRACT

The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.


Subject(s)
Alpha Particles , DNA Damage , Plasmids/radiation effects , DNA, Single-Stranded/radiation effects , Dose-Response Relationship, Radiation , Escherichia coli/genetics , Nucleic Acid Conformation , Particle Accelerators , Plasmids/chemistry , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...