Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Ther Adv Neurol Disord ; 16: 17562864221150312, 2023.
Article in English | MEDLINE | ID: mdl-36762317

ABSTRACT

Background: Clinical and radiological signs of recurring disease activity (RDA) have been described in patients with multiple sclerosis (pwMS) after discontinuation of fingolimod (FGL). Objective: To describe frequency, severity and potential risk factors for RDA after FGL discontinuation in a large real-world cohort of pwMS. Methods: Post-FGL RDA was defined as evidence of clinical and/or radiological activity within 6 months after FGL discontinuation. Relapses with Expanded Disability Status Scale increase ⩾2 points and/or magnetic resonance imaging (MRI) activity with at least five cerebral gadolinium-enhancing lesions and/or ⩾6 cerebral new T2 lesions were defined as severe recurring disease activity (sRDA). Using a multivariate logistic model, we explored the influence of age, disease duration, sex, clinical, and MRI activity under FGL on the occurrence of RDA. Results: We identified 110 pwMS who discontinued FGL. Thirty-seven (33.6%) developed post-FGL RDA and 13 (11.8%) also fulfilled criteria for sRDA. Younger age at diagnosis [odds ratio (OR) = 1.10, p < 0.01], shorter disease duration (OR = 1.17, p < 0.01), and MRI activity under FGL (OR = 2.92, p = 0.046) were independent risk factors for the occurrence of post-FGL RDA. Conclusion: Individual risk assessment and optimal treatment sequencing can help to minimize the risk of post-FGL RDA. Early switch to highly effective disease-modifying therapy might reduce occurrence of post-FGL RDA.

2.
J Neurol ; 270(4): 2139-2148, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36625888

ABSTRACT

BACKGROUND: Retinal degeneration leading to optical coherence tomography (OCT) changes is frequent in patients with multiple sclerosis (PwMS). OBJECTIVE: To investigate associations among OCT changes, MRI measurements of global and regional brain volume loss, and physical and cognitive impairment in PwMS. METHODS: 95 PwMS and 52 healthy controls underwent OCT and MRI examinations. Mean peripapillary retinal nerve fiber layer (pRNFL) thickness and ganglion cell/inner plexiform layer (GCIPL) volume were measured. In PwMS disability was quantified with the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). Associations between OCT, MRI, and clinical measures were investigated with multivariable regression models. RESULTS: In PwMS, pRNFL and GCIPL were associated with the volume of whole brain (p < 0.04), total gray matter (p < 0.002), thalamus (p ≤ 0.04), and cerebral cortex (p ≤ 0.003) -both globally and regionally-, but not white matter. pRNFL and GCIPL were also inversely associated with T2-lesion volume (T2LV), especially in the optic radiations (p < 0.0001). The brain volumes associated with EDSS and SDMT significantly overlapped with those correlating with pRNFL and GCIPL. CONCLUSIONS: In PwMS, pRNFL and GCIPL reflect the integrity of clinically-relevant gray matter structures, underling the value of OCT measures as markers of neurodegeneration and disability in multiple sclerosis.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Retinal Ganglion Cells/pathology , Gray Matter/diagnostic imaging , Tomography, Optical Coherence/methods , Cerebral Cortex
4.
Article in English | MEDLINE | ID: mdl-35217580

ABSTRACT

BACKGROUND AND OBJECTIVES: The choroid plexus has been shown to play a crucial role in CNS inflammation. Previous studies found larger choroid plexus in multiple sclerosis (MS) compared with healthy controls. However, it is not clear whether the choroid plexus is similarly involved in MS and in neuromyelitis optica spectrum disorder (NMOSD). Thus, the aim of this study was to compare the choroid plexus volume in MS and NMOSD. METHODS: In this retrospective, cross-sectional study, patients were included by convenience sampling from 4 international MS centers. The choroid plexus of the lateral ventricles was segmented fully automatically on T1-weighted MRI sequences using a deep learning algorithm (Multi-Dimensional Gated Recurrent Units). Uni- and multivariable linear models were applied to investigate associations between the choroid plexus volume, clinically meaningful disease characteristics, and MRI parameters. RESULTS: We studied 180 patients with MS and 98 patients with NMOSD. In total, 94 healthy individuals and 47 patients with migraine served as controls. The choroid plexus volume was larger in MS (median 1,690 µL, interquartile range [IQR] 648 µL) than in NMOSD (median 1,403 µL, IQR 510 µL), healthy individuals (median 1,533 µL, IQR 570 µL), and patients with migraine (median 1,404 µL, IQR 524 µL; all p < 0.001), whereas there was no difference between NMOSD, migraine, and healthy controls. This was also true when adjusted for age, sex, and the intracranial volume. In contrast to NMOSD, the choroid plexus volume in MS was associated with the number of T2-weighted lesions in a linear model adjusted for age, sex, total intracranial volume, disease duration, relapses in the year before MRI, disease course, Expanded Disability Status Scale score, disease-modifying treatment, and treatment duration (beta 4.4; 95% CI 0.78-8.1; p = 0.018). DISCUSSION: This study supports an involvement of the choroid plexus in MS in contrast to NMOSD and provides clues to better understand the respective pathogenesis.


Subject(s)
Migraine Disorders , Multiple Sclerosis , Neuromyelitis Optica , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Cross-Sectional Studies , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/pathology , Retrospective Studies
5.
Eur Heart J ; 43(22): 2127-2135, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35171989

ABSTRACT

AIMS: We aimed to investigate the association of clinically overt and silent brain lesions with cognitive function in atrial fibrillation (AF) patients. METHODS AND RESULTS: We enrolled 1227 AF patients in a prospective, multicentre cohort study (Swiss-AF). Patients underwent standardized brain magnetic resonance imaging (MRI) at baseline and after 2 years. We quantified new small non-cortical infarcts (SNCIs) and large non-cortical or cortical infarcts (LNCCIs), white matter lesions (WML), and microbleeds (Mb). Clinically, silent infarcts were defined as new SNCI/LNCCI on follow-up MRI in patients without a clinical stroke or transient ischaemic attack (TIA) during follow-up. Cognition was assessed using validated tests. The mean age was 71 years, 26.1% were females, and 89.9% were anticoagulated. Twenty-eight patients (2.3%) experienced a stroke/TIA during 2 years of follow-up. Of the 68 (5.5%) patients with ≥1 SNCI/LNCCI, 60 (88.2%) were anticoagulated at baseline and 58 (85.3%) had a silent infarct. Patients with brain infarcts had a larger decline in cognition [median (interquartile range)] changes in Cognitive Construct score [-0.12 (-0.22; -0.07)] than patients without new brain infarcts [0.07 (-0.09; 0.25)]. New WML or Mb were not associated with cognitive decline. CONCLUSION: In a contemporary cohort of AF patients, 5.5% had a new brain infarct on MRI after 2 years. The majority of these infarcts was clinically silent and occurred in anticoagulated patients. Clinically, overt and silent brain infarcts had a similar impact on cognitive decline. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02105844, https://clinicaltrials.gov/ct2/show/NCT02105844.


Subject(s)
Atrial Fibrillation , Ischemic Attack, Transient , Stroke , Aged , Atrial Fibrillation/complications , Atrial Fibrillation/pathology , Brain/diagnostic imaging , Brain/pathology , Brain Infarction , Cognition , Cohort Studies , Female , Humans , Ischemic Attack, Transient/complications , Magnetic Resonance Imaging , Male , Prospective Studies , Stroke/pathology
6.
Front Neurol ; 9: 842, 2018.
Article in English | MEDLINE | ID: mdl-30356868

ABSTRACT

Central nervous system inflammation and neurodegeneration are the pathophysiological hallmarks of multiple sclerosis (MS). While inflammation can readily be targeted by current disease modifying drugs, neurodegeneration is by far less accessible to treatment. Based on suggested additional neuroprotective capacities of the orally available non-opioid and centrally acting analgesic drug flupirtine maleate we hypothesized that treatment with flupirtine maleate might be beneficial in MS patients. The flupirtine as oral treatment in multiple sclerosis (FLORIMS) study was a multi-center, randomized and stratified, placebo-controlled double-blind phase II trial to investigate safety and efficacy in terms of clinical and radiographical activity of flupirtine maleate (300 mg per day) given orally for 12 months, add-on to interferon beta 1b subcutaneously in patients with relapsing remitting MS. Due to a substantial delay in recruitment, enrolment of patients was prematurely terminated after randomization of only 30 of the originally planned 80 patients. Of these, 24 regularly terminated study after 12 months of treatment. Data were analyzed as originally planned. Treatment with flupirtine maleate was overall well tolerated. We observed moderate and asymptomatic elevations of liver enzymes in several cases but no overt hepatotoxicity. Neither the intention to treat nor the per protocol analysis revealed any significant treatment effects of flupirtine maleate with respect to occurrence of MS relapses, disability progression, or development of new lesions on cranial MRI. However, substantial methodological limitations need to be considered when interpreting these results. In conclusion, the results of the FLORIMS study neither add further evidence to nor argue against the hypothesized neuroprotective or disease modifying effects of flupirtine maleate in MS.

7.
Hum Brain Mapp ; 38(7): 3615-3622, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28432780

ABSTRACT

Non-quantitative MRI is prone to intersubject intensity variation rendering signal intensity level based analyses limited. Here, we propose a method that fuses non-quantitative routine T1-weighted (T1w), T2w, and T2w fluid-saturated inversion recovery sequences using independent component analysis and validate it on age and sex matched healthy controls. The proposed method leads to consistent and independent components with a significantly reduced coefficient-of-variation across subjects, suggesting potential to serve as automatic intensity normalization and thus to enhance the power of intensity based statistical analyses. To exemplify this, we show that voxelwise statistical testing on single-subject independent components reveals in particular a widespread sex difference in white matter, which was previously shown using, for example, diffusion tensor imaging but unobservable in the native MRI contrasts. In conclusion, our study shows that single-subject independent component analysis can be applied to routine sequences, thereby enhancing comparability in-between subjects. Unlike quantitative MRI, which requires specific sequences during acquisition, our method is applicable to existing MRI data. Hum Brain Mapp 38:3615-3622, 2017. © 2017 Wiley Periodicals, Inc.

8.
J Magn Reson Imaging ; 44(1): 51-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26714969

ABSTRACT

PURPOSE: To assess if higher-resolution magnetic resonance elastography (MRE) is a technique that can measure the in vivo mechanical properties of brain tissue and is sensitive to early signatures of brain tissue degradation in patients with clinically isolated syndrome (CIS). MATERIALS AND METHODS: Seventeen patients with CIS and 33 controls were investigated by MRE with a 3T MRI scanner. Full-wave field data were acquired at seven drive frequencies from 30 to 60 Hz. The spatially resolved higher-resolution maps of magnitude |G*| and phase angle φ of the complex-valued shear modulus were obtained in addition to springpot model parameters. These parameters were spatially averaged in white matter (WM) and whole-brain regions and correlated with clinical and radiological parameters. RESULTS: Spatially resolved MRE revealed that CIS reduced WM viscoelasticity, independent of imaging markers of multiple sclerosis and clinical scores. |G*| was reduced by 14% in CIS (1.4 ± 0.2 kPa vs. 1.7 ± 0.2 kPa, P < 0.001, 95% confidence interval [CI] [-0.4, -0.1] kPa), while φ (0.66 ± 0.04 vs. 0.67 ± 0.04, P = 0.65, 95% CI [-0.04, 0.02]) remained unaltered. Springpot-based shear elasticity showed only a trend of CIS-related reduction (3.4 ± 0.5 kPa vs. 3.7 ± 0.5 kPa, P = 0.06, 95% CI [-0.6, 0.02] kPa) in the whole brain. CONCLUSION: We demonstrate that CIS leads to significantly reduced elasticity of brain parenchyma, raising the prospect of using MRE as an imaging marker for subtle and diffuse tissue damage in neuroinflammatory diseases. J. Magn. Reson. Imaging 2016;44:51-58.


Subject(s)
Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/physiopathology , Elasticity Imaging Techniques/methods , Epilepsy/pathology , Epilepsy/physiopathology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Adult , Early Diagnosis , Elastic Modulus , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Stress, Mechanical
9.
J Neurol ; 262(8): 1927-35, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041613

ABSTRACT

Autosomal dominant ataxia type 14 (SCA14) is a rare usually adult-onset progressive disorder with cerebellar neurodegeneration caused by mutations in protein kinase C gamma. We set out to examine cerebellar and extracerebellar neurochemical changes in SCA14 by MR spectroscopy. In 13 SCA14 patients and 13 healthy sex- and age-matched controls, 3-T single-voxel brain proton MR spectroscopy was performed in a cerebellar voxel of interest (VOI) at TE = 30 ms to obtain a neurochemical profile of metabolites with short relaxation times. In the cerebellum and in additional VOIs in the prefrontal cortex, motor cortex, and somatosensory cortex, a second measurement was performed at TE = 144 ms to mainly extract the total N-acetyl-aspartate (tNAA) signal besides the signals for total creatine (tCr) and total choline (tCho). The cerebellar neurochemical profile revealed a decrease in glutathione (6.12E-06 ± 2.50E-06 versus 8.91E-06 ± 3.03E-06; p = 0028) and tNAA (3.78E-05 ± 5.67E-06 versus 4.25E-05 ± 5.15E-06; p = 0023) and a trend for reduced glutamate (2.63E-05 ± 6.48E-06 versus 3.15E-05 ± 7.61E-06; p = 0062) in SCA14 compared to controls. In the tNAA-focused measurement, cerebellar tNAA (296.6 ± 42.6 versus 351.7 ± 16.5; p = 0004) and tCr (272.1 ± 25.2 versus 303.2 ± 31.4; p = 0004) were reduced, while the prefrontal, somatosensory and motor cortex remained unaffected compared to controls. Neuronal pathology in SCA14 detected by MR spectroscopy was restricted to the cerebellum and did not comprise cortical regions. In the cerebellum, we found in addition to signs of neurodegeneration a glutathione reduction, which has been associated with cellular damage by oxidative stress in other neurodegenerative diseases such as Parkinson's disease and Friedreich's ataxia.


Subject(s)
Cerebellum/metabolism , Cerebral Cortex/metabolism , Glutathione/metabolism , Proton Magnetic Resonance Spectroscopy/methods , Spinocerebellar Ataxias/metabolism , Adult , Aged , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Creatine/metabolism , Female , Glutamic Acid/metabolism , Glutathione/deficiency , Humans , Male , Middle Aged
10.
Mov Disord ; 26(12): 2279-83, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21953512

ABSTRACT

BACKGROUND: The purpose of the study was to identify and molecularly characterize a neurological syndrome in a consanguineous Pakistani family. METHODS: Five patients, their 2 siblings, and their parents were clinically examined. DNA from all 7 siblings was genotyped with Affymetrix SNP arrays and sequencing of selected candidate genes. RESULTS: An unusual neurological syndrome of crawling gait, predominant leg dystonia, pyramidal signs, microcephaly, and suspected deafness segregated in the family. Three patients ambulated on hands and knees, either by hopping and crossing their legs, or by dragging the legs behind them. Two patients have acquired the ability to walk bipedally with a dystonic gait. Unexpectedly, no chromosomal region was homozygous in patients only. Under different disease models, we localized 7 chromosomal regions in the genome common to all patients. No pathogenic mutations were identified in selected candidate genes or the mitochondrial genome. CONCLUSION: We describe an unusual movement disorder syndrome reminiscent of but distinct from Uner Tan syndrome.


Subject(s)
Dystonic Disorders/complications , Gait Disorders, Neurologic/complications , Speech Disorders/complications , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 7/genetics , Consanguinity , DNA Mutational Analysis , Dystonic Disorders/genetics , Family Health , Female , Gait Disorders, Neurologic/genetics , Genotype , Humans , Male , Pakistan , Polymorphism, Single Nucleotide/genetics , Speech Disorders/genetics
11.
J Neurosci Methods ; 161(1): 112-7, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17174402

ABSTRACT

Information about the microstructural organization of cerebral white matter that is accessible by magnetic resonance diffusion tensor imaging (DTI) gains increasing importance for studies of animal brain. Particular challenges occur for in vivo conditions as well as at high magnetic fields. Here, we have employed a diffusion-weighted (DW) single-shot STEAM MRI sequence for DTI of mouse brain in vivo at 7 T. The approach exploits the increased longitudinal magnetization and prolonged T1 relaxation times of water protons at higher magnetic field strengths without suffering from susceptibility-induced artifacts. When compared to studies at 2.35 T, half Fourier DW STEAM MRI at 7 T yielded a substantial gain in signal-to-noise ratio (SNR) that could be invested either in a reduction of the measurement time or an increase of the spatial resolution. Thus, for a measurement time of 3h, DTI with a voxel size of 117 microm x 117 microm x 720 microm not only resulted in high-quality maps of the fractional anisotropy and main diffusion direction (MDD), but also allowed for fiber tracking of major mouse brain structures in vivo.


Subject(s)
Brain Mapping , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Animals , Echo-Planar Imaging , Fourier Analysis , Image Processing, Computer-Assisted , Mice , Sensitivity and Specificity
12.
Proc Natl Acad Sci U S A ; 101(23): 8705-8, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15161974

ABSTRACT

Identifying effective treatment combinations for MS patients failing standard therapy is an important goal. We report the results of a phase II open label baseline-to-treatment trial of a humanized monoclonal antibody against CD25 (daclizumab) in 10 multiple sclerosis patients with incomplete response to IFN-beta therapy and high brain inflammatory and clinical disease activity. Daclizumab was very well tolerated and led to a 78% reduction in new contrast-enhancing lesions and to a significant improvement in several clinical outcome measures.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunoglobulin G/therapeutic use , Multiple Sclerosis/therapy , Adult , Antibodies, Monoclonal, Humanized , Daclizumab , Female , Humans , Interferon Type I/therapeutic use , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Chronic Progressive/physiopathology , Multiple Sclerosis, Chronic Progressive/therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/therapy , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...