Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 15(13): e202200418, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35439346

ABSTRACT

The oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio-source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.


Subject(s)
Amino Acids , Furaldehyde , Dicarboxylic Acids/chemistry , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Furans/chemistry
2.
Bioresour Technol ; 333: 125110, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33882383

ABSTRACT

The biogas digestate from anaerobic digestion of cow manure and energy crops was treated by hydrothermal carbonization (HTC) at 210 °C for 0.5 to 5 h to understand the effect of HTC residence time on the combustion characteristics of hydrochar and the biogas production of process water. The increase in HTC residence time slightly reduced the higher heating values (16.3-16.0 MJ/kg) but improved most slagging and fouling indices of the hydrochar. However, the slagging and fouling during hydrochar combustion were almost impossible to avoid. The specific methane yield of the process water was not significantly influenced by the HTC residence time. Energy assessment demonstrated that HTC for 0.5 h achieved the highest process efficiency and net energy gain when the combustion energy was obtained from hydrochar and CH4 (from process water). Therefore, the HTC condition of 210 °C, 0.5 h is suggested to valorize biogas digestate for energy production.


Subject(s)
Biofuels , Water , Animals , Carbon , Cattle , Female , Manure , Methane , Temperature
3.
ChemistryOpen ; 9(8): 864-873, 2020 08.
Article in English | MEDLINE | ID: mdl-32864290

ABSTRACT

Hydrothermal carbonization (HTC) of fructose and urea containing solutions was conducted at 180 °C to study the influence of nitrogen-containing compounds on conversion and product properties. The concentration of fructose was fixed, while the concentration of urea was gradually increased to study its influence on the formation of nitrogen-containing hydrochar (N-HC). The degradation of urea has an important influence on the HTC of fructose. The Maillard reaction (MR) promotes the formation of N-HC in acidic conditions. However, in alkaline conditions, MR promotes the formation of bio-oil at the expense of N-HC. Alkaline conditions reduce N-HC yield by catalyzing fragmentation reactions of fructose and by promoting the isomerization of fructose to glucose. The results showed that adjusting the concentration of nitrogen-containing compounds or the pH value of the reaction environment is important to force the reaction toward the formation of N-HC or N-bio-oil.

4.
Bioresour Technol ; 314: 123734, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32622280

ABSTRACT

Hydrothermal carbonization (HTC) was evaluated as a promising treatment to enhance the biomethane potential during anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). The OFMSW was carbonized at different conditions and HTC products were tested for biomethane potential into AD. Results proved that the use of HTC liquid and slurry into AD led to an increase in biomethane production up to 37% and 363%, respectively, compared to OFMSW. Methane production increased as the HTC process severity decreased, reaching its maximum at 180 °C, 1 h for both HTC products. Energy assessment demonstrated that the combustion of biogas produced by AD of HTC liquid and slurries covers up to 30% and 104% of the HTC thermal demand, respectively. When the energy from hydrochar and biogas combustion was recovered, the process efficiency reached 60%. Hence, HTC coupled with AD demonstrates to be an efficient way to valorize OFMSW.


Subject(s)
Refuse Disposal , Solid Waste , Anaerobiosis , Biofuels/analysis , Methane
5.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561500

ABSTRACT

Straws are agricultural residues that can be used to produce biomethane by anaerobic digestion. The methane yield of rice straw is lower than other straws. Steam explosion was investigated as a pretreatment to increase methane production. Pretreatment conditions with varying reaction times (12-30 min) and maximum temperatures (162-240 °C) were applied. The pretreated material was characterized for its composition and thermal and morphological properties. When the steam explosion was performed with a moderate severity parameter of S0 = 4.1 min, the methane yield was increased by 32% compared to untreated rice straw. This study shows that a harsher pretreatment at S0 > 4.3 min causes a drastic reduction of methane yield because inert condensation products are formed from hemicelluloses.


Subject(s)
Biofuels/analysis , Explosions , Oryza/chemistry , Steam , Algorithms , Methane/chemistry , Models, Theoretical , Thermogravimetry
6.
J Environ Manage ; 234: 537-545, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30660054

ABSTRACT

Human faeces from a dry toilet are converted via hydrothermal carbonization to obtain a sterilized carbonaceous material. During this process the original material undergoes consecutively hydrolysis, water elimination and polymerization reactions. Consequently, the oxygen content is reduced, leading to a material with a better dewaterability and an attractive higher heating value (HHV = 22-28 MJ kg-1). The influence of pH-value, set by the addition of citric acid, the reaction time and the reaction temperature are investigated. By thermogravimetric analysis it is shown that especially higher acid concentration as well as higher reaction temperatures and longer reaction times are necessary to fully convert the feedstock into a stable carbon-rich material. As pathogens are destroyed by hydrothermal carbonization, nutrient recovery becomes a relevant aspect. The analysis shows that alkali salts such as sodium and potassium are dissolved in the aqueous phase, but an important proportion of the phosphorus and nitrogen remain in the hydrochar. This finding is the basis for phosphorus recycling or to produce an organic fertilizer.


Subject(s)
Bathroom Equipment , Carbon , Nitrogen , Phosphorus , Temperature
7.
Waste Manag ; 80: 224-234, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30455003

ABSTRACT

An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.


Subject(s)
Olea , Carbon , Industrial Waste , Olive Oil , Soil , Temperature
8.
J Environ Manage ; 156: 150-7, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25845996

ABSTRACT

Pyrolysis liquids consist of thermal degradation products of biomass in various stages of its decomposition. Therefore, if biochar gets affected by re-condensed pyrolysis liquids it is likely to contain a huge variety of organic compounds. In this study the chemical composition of such compounds associated with two contaminated, high-volatile organic compound (VOC) biochars were investigated and compared with those for a low-VOC biochar. The water-soluble organic compounds with the highest concentrations in the two high-VOC biochars were acetic, formic, butyric and propionic acids; methanol, phenol, o-, m- and p-cresol, and 2,4-dimethylphenol, all with concentrations over 100 µg g(-1). The concentrations of 16 US EPA PAHs determined by 36 h toluene extractions were 6.09 µg g(-1) for the low-VOC biochar. For high-VOC biochar the total concentrations were 53.42 µg g(-1) and 27.89 µg g(-1), while concentrations of water-soluble PAHs ranged from 1.5 to 2 µg g(-1). Despite the concentrations of PAHs exceeding biochar guideline values, it was concluded that, for these particular biochars, the biggest concern for application to soil would be the co-occurrence of VOCs such as low molecular weight (LMW) organic acids and phenols, as these can be highly mobile and have a high potential to cause phytotoxic effects. Therefore, based on results of this study we strongly suggest for VOCs to be included among criteria for assessment of biochar quality.


Subject(s)
Charcoal/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/chemistry , Volatile Organic Compounds/analysis , Animal Feed/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Soil/chemistry , Soil Pollutants/toxicity , Volatile Organic Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...