Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Lab Chip ; 22(22): 4292-4305, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36196753

ABSTRACT

This work presents the application of droplet-based microfluidics for the cultivation of microspores from Brassica napus using the doubled haploid technology. Under stress conditions (e.g. heat shock) or by chemical induction a certain fraction of the microspores can be reprogrammed and androgenesis can be induced. This process is an important approach for plant breeding because desired plant properties can be anchored in the germline on a genetic level. However, the reprogramming rate of the microspores is generally very low, increasing it by specific stimulation is, therefore, both a necessary and challenging task. In order to accelerate the optimisation and development process, the application of droplet-based microfluidics can be a promising tool. Here, we used a tube-based microfluidic system for the generation and cultivation of microspores inside nL-droplets. Different factors like cell density, tube material and heat shock conditions were investigated to improve the yield of vital plant organoids. Evaluation and analysis of the stimuli response were done on an image base aided by an artificial intelligence cell detection algorithm. Droplet-based microfluidics allowed us to apply large concentration programs in small test volumes and to screen the best conditions for reprogramming cells by the histone deacetylase inhibitor trichostatin A and for enhancing the yield of vital microspores in droplets. An enhanced reprogramming rate was found under the heat shock conditions at 32 °C for about 3 to 6 days. In addition, the comparative experiment with MTP showed that droplet cultivation with lower cell density (<10 cells per droplet) or adding media after 3 or 6 days significantly positively affects the microspore growth and embryo rate inside 120 nL droplets. Finally, the developed embryos could be removed from the droplets and further grown into mature plants. Overall, we demonstrated that the droplet-based tube system is suitable for implementation in an automated, miniaturized system to achieve the induction of embryogenic development in haploid microspore stem cells of Brassica napus.


Subject(s)
Brassica napus , Microfluidics , Haploidy , Pollen , Artificial Intelligence , Brassica napus/genetics , Stem Cells
2.
Plant Methods ; 18(1): 64, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585602

ABSTRACT

BACKGROUND: Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable regeneration conditions. RESULTS: High-throughput automated microscopy coupled with the development of image processing pipelines allowed to quantify various developmental properties of thousands of protoplasts during the initial days following cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We compared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated athanogene 4 from Arabidopsis (AtBAG4). CONCLUSIONS: AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area increases than the wild type and showed increased growth rates as well as increased proliferation rates upon continued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell properties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechnological screening strategies able to determine improved plant properties via single-cell analysis.

3.
Plant Physiol ; 185(2): 331-351, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721895

ABSTRACT

Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation of the molecules in the pathway. While plant carotenoid biosynthesis has been extensively characterized, research on carotenoid degradation and catabolism into apocarotenoids is a relatively novel field. To identify apocarotenoid metabolic processes, we characterized the transcriptome of transgenic Arabidopsis (Arabidopsis thaliana) roots accumulating high levels of ß-carotene and, consequently, ß-apocarotenoids. Transcriptome analysis revealed feedback regulation on carotenogenic gene transcripts suitable for reducing ß-carotene levels, suggesting involvement of specific apocarotenoid signaling molecules originating directly from ß-carotene degradation or after secondary enzymatic derivatizations. Enzymes implicated in apocarotenoid modification reactions overlapped with detoxification enzymes of xenobiotics and reactive carbonyl species (RCS), while metabolite analysis excluded lipid stress response, a potential secondary effect of carotenoid accumulation. In agreement with structural similarities between RCS and ß-apocarotenoids, RCS detoxification enzymes also converted apocarotenoids derived from ß-carotene and from xanthophylls into apocarotenols and apocarotenoic acids in vitro. Moreover, glycosylation and glutathionylation-related processes and translocators were induced. In view of similarities to mechanisms found in crocin biosynthesis and cellular deposition in saffron (Crocus sativus), our data suggest apocarotenoid metabolization, derivatization and compartmentalization as key processes in (apo)carotenoid metabolism in plants.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Plant Proteins/metabolism , Transcriptome , Xenobiotics/metabolism , Arabidopsis/genetics , Free Radicals/metabolism , Gene Expression Profiling , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Xanthophylls/metabolism
4.
Front Plant Sci ; 10: 574, 2019.
Article in English | MEDLINE | ID: mdl-31143194

ABSTRACT

The vesicle trafficking inhibitor Brefeldin A (BFA) changes the localization of plasma membrane localized PINs, proteins that function as polar auxin efflux carriers, by inducing their accumulation within cells. Pretreatment with the synthetic auxin 1-NAA reduces this BFA-induced PIN internalization, suggesting that auxinic compounds inhibit the endocytosis of PIN proteins. However, the most important natural auxin, IAA, did not substantially inhibit PIN internalization unless a supplementary antioxidant, butylated hydroxytoluene (BHT), was also included in the incubation medium. We asked whether the relatively small inhibition caused by IAA alone could be explained by its instability in the incubation solution or whether IAA might interact with BHT to inhibit endocytosis. Analysis of the IAA concentration in the incubation solution and of DR5 reporter activity in the roots showed that IAA is both stable and active in the medium. Therefore, IAA degradation was not able to explain the inability of IAA to inhibit endocytosis. Furthermore, when applied in the absence of auxin, BHT caused a strong increase in the rate of PIN1 internalization and a weaker increase in the rate of PIN2 internalization. These increases were unaffected by the simultaneous application of IAA, further indicating that endocytosis is not inhibited by the natural auxin IAA under physiologically relevant conditions. Endocytosis was inhibited at the same rate with 2-NAA, an inactive auxin analog, as was observed with 1-NAA and more strongly than with natural auxins, supporting the idea that this inhibition is not auxin specific.

5.
PLoS One ; 13(2): e0192158, 2018.
Article in English | MEDLINE | ID: mdl-29394270

ABSTRACT

The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of ß-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while ß-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in ß-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state ß-carotene amounts to up to 500 µg g-1 dry mass. Furthermore, we identified oxidative ß-carotene degradation products which correlated with pathway activities, yielding ß-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of ß-carotene sequestration by co-localization experiments which revealed that ß-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state ß-carotene levels prior to their application in crops.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Arabidopsis/growth & development , Carotenoids/biosynthesis , Kinetics , Oxidation-Reduction , Subcellular Fractions/metabolism , beta Carotene/metabolism
6.
J Agric Food Chem ; 65(31): 6588-6598, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28703588

ABSTRACT

Provitamin A biofortification, the provision of provitamin A carotenoids through agriculture, is regarded as an effective and sustainable intervention to defeat vitamin A deficiency, representing a global health problem. This food-based intervention has been questioned in conjunction with negative outcomes for smokers and asbestos-exposed populations of the CARET and ATBC trials in which very high doses of ß-carotene were supplemented. The current notion that ß-carotene cleavage products (apocarotenoids) represented the harmful agents is the basis of the here-presented research. We quantitatively analyzed numerous plant food items and concluded that neither the amounts of apocarotenoids nor ß-carotene provided by plant tissues, be they conventional or provitamin A-biofortified, pose an increased risk. We also investigated ß-carotene degradation pathways over time. This reveals a substantial nonenzymatic proportion of carotene decay and corroborates the quantitative relevance of highly oxidized ß-carotene polymers that form in all plant tissues investigated.


Subject(s)
Crops, Agricultural/chemistry , Food, Fortified/analysis , Provitamins/chemistry , Vitamin A/chemistry , beta Carotene/chemistry , Biofortification , Dietary Supplements , Food Safety
7.
FEBS Lett ; 591(5): 792-800, 2017 03.
Article in English | MEDLINE | ID: mdl-28186640

ABSTRACT

Strigolactones are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured ß-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used 13 C and 18 O-labeling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation.


Subject(s)
Carotenoids/chemistry , Dioxygenases/chemistry , Lactones/chemical synthesis , Plant Growth Regulators/chemical synthesis , Plant Proteins/chemistry , beta Carotene/chemistry , Biocatalysis , Carbon Isotopes , Dioxygenases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Oxygen Isotopes , Pisum sativum/chemistry , Pisum sativum/enzymology , Plant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
8.
Plant Physiol ; 172(4): 2314-2326, 2016 12.
Article in English | MEDLINE | ID: mdl-27729470

ABSTRACT

Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway.


Subject(s)
5' Untranslated Regions/genetics , Alternative Splicing/genetics , Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Carotenoids/biosynthesis , Multienzyme Complexes/genetics , Protein Biosynthesis/genetics , Arabidopsis Proteins/metabolism , Carotenoids/genetics , Carotenoids/metabolism , Computational Biology , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/metabolism , Models, Biological , Multienzyme Complexes/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics
9.
Plant Physiol ; 168(4): 1550-62, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26134165

ABSTRACT

Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly ß-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of ß-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Homeostasis , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carotenoids/biosynthesis , Chloroplasts/genetics , Chloroplasts/metabolism , Chromatography, Liquid , Dioxygenases/genetics , Dioxygenases/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Glycosides/metabolism , Glycosylation , Immunoblotting , Mass Spectrometry , Mutation , Plant Leaves/genetics , Plant Roots/genetics , Plant Roots/metabolism , Xanthophylls/metabolism , beta Carotene/metabolism
10.
New Phytol ; 205(2): 869-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25209349

ABSTRACT

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.


Subject(s)
Acclimatization/genetics , Bryopsida/physiology , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Acclimatization/physiology , Bryopsida/genetics , Bryopsida/growth & development , Cold Temperature , Gene Ontology , Reproducibility of Results , Signal Transduction/genetics , Transcriptome
11.
Proc Natl Acad Sci U S A ; 109(15): 5892-7, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22451940

ABSTRACT

Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.


Subject(s)
Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Phytochrome B/metabolism , Acetabularia/metabolism , Active Transport, Cell Nucleus , Arabidopsis/metabolism , Nuclear Localization Signals , Protein Binding , Recombinant Fusion Proteins/metabolism
12.
PLoS One ; 6(11): e27250, 2011.
Article in English | MEDLINE | ID: mdl-22073299

ABSTRACT

The phyB-401 mutant is 10(3) fold more sensitive to red light than its wild-type analogue and shows loss of photoreversibility of hypocotyl growth inhibition. The phyB-401 photoreceptor displays normal spectral properties and shows almost no dark reversion when expressed in yeast cells. To gain insight into the molecular mechanism underlying this complex phenotype, we generated transgenic lines expressing the mutant and wild-type phyB in phyB-9 background. Analysis of these transgenic lines demonstrated that the mutant photoreceptor displays a reduced rate of dark-reversion but normal P(fr) to P(r) photoconversion in vivo and shows an altered pattern of association/dissociation with nuclear bodies compared to wild-type phyB. In addition we show (i) an enhanced responsiveness to far-red light for hypocotyl growth inhibition and CAB2 expression and (ii) that far-red light mediated photoreversibility of red light induced responses, including inhibition of hypocotyl growth, formation of nuclear bodies and induction of CAB2 expression is reduced in these transgenic lines. We hypothesize that the incomplete photoreversibility of signalling is due to the fact that far-red light induced photoconversion of the chromophore is at least partially uncoupled from the P(fr) to P(r) conformation change of the protein. It follows that the phyB-401 photoreceptor retains a P(fr)-like structure (P(r) (*)) for a few hours after the far-red light treatment. The greatly reduced rate of dark reversion and the formation of a biologically active P(r) (*) conformer satisfactorily explain the complex phenotype of the phyB-401 mutant and suggest that amino acid residues surrounding the position 564 G play an important role in fine-tuning phyB signalling.


Subject(s)
Darkness , Light , Mutation , Phytochrome B/metabolism , Plant Physiological Phenomena , Kinetics , Plants, Genetically Modified , Signal Transduction
13.
Cell ; 146(5): 813-25, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21884939

ABSTRACT

Phytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical approach, we unravel the mechanism underlying this shift of the phyA action peak from red to far-red light and show that it relies on specific molecular interactions rather than on intrinsic changes to phyA's spectral properties. According to our model, the dissociation rate of the phyA-FHY1/FHL nuclear import complex is a principle determinant of the phyA action peak. The findings suggest how higher plants acquired the ability to sense far-red light from an ancestral photoreceptor tuned to respond to red light.


Subject(s)
Active Transport, Cell Nucleus , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phytochrome A/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Light , Models, Biological , Phytochrome A/genetics
14.
Planta ; 232(5): 1251-62, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20737168

ABSTRACT

Abiotic stress stimuli induce the increased synthesis of abscisic acid (ABA), which is generated through the cleavage of xanthophyll precursors. To cope with the increased xanthophyll demand, maize and rice contain a third stress-induced gene copy, coding for phytoene synthase (PSY), which catalyzes the first carotenoid-specific reaction in the pathway. To investigate whether this specific response extends beyond the Poaceae, cassava was analyzed, an important tropical crop known for its drought tolerance. We also found three PSY genes in cassava, one of which (MePSY3) forms a separate branch with the stress-specific Poaceae homologs. However, MePSY3 transcripts were virtually absent in all tissues investigated and did not change upon abiotic stress treatment. In contrast, the two remaining PSY genes contributed differentially to carotenoid biosynthesis in leaves, roots, and flower organs and responded towards drought and salt-stress conditions. Detailed analyses of PSY and 9-cis-epoxycarotenoid cleavage dioxygenase (MeNCED) expression and resulting ABA levels revealed MePSY1 as the main stress-responsive paralog. In the presence of high carotenoid levels in leaves, MePSY1 appeared to support, but not to be rate-limiting for ABA formation; MeNCED represented the main driver. The inverse situation was found in roots where carotenoid levels are low. Moreover, ABA formation and the relative induction kinetics showed discrimination between drought and salt stress. Compared to rice as a drought-intolerant species, the drought response in cassava followed a different kinetic regime. The difference is thought to represent a component contributing to the large differences in the adaptation towards water supply.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Manihot/enzymology , Abscisic Acid , Alkyl and Aryl Transferases/genetics , Carotenoids , Dioxygenases , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Manihot/drug effects , Plant Proteins , Salts/pharmacology
15.
PLoS One ; 4(7): e6373, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19636414

ABSTRACT

BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY) is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the functional overexpression of one biosynthetic enzyme in non-green plastids not requiring a chromoplast developmental program as this does not exist in Arabidopsis. Thus, PSY expression plays a major, rate-limiting role in the transition from white to orange-colored carrots.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis/metabolism , Carotenoids/biosynthesis , Daucus carota/metabolism , Plant Roots/metabolism , Alkyl and Aryl Transferases/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , RNA, Messenger/genetics
16.
Plant Physiol ; 147(1): 367-80, 2008 May.
Article in English | MEDLINE | ID: mdl-18326788

ABSTRACT

We here report on the characterization of a novel third phytoene synthase gene (PSY) in rice (Oryza sativa), OsPSY3, and on the differences among all three PSY genes with respect to the tissue-specific expression and regulation upon various environmental stimuli. The two already known PSYs are under phytochrome control and involved in carotenoid biosynthesis in photosynthetically active tissues and exhibit different expression patterns during chloroplast development. In contrast, OsPSY3 transcript levels are not affected by light and show almost no tissue-specific differences. Rather, OsPSY3 transcripts are up-regulated during increased abscisic acid (ABA) formation upon salt treatment and drought, especially in roots. The simultaneous induction of genes encoding 9-cis-epoxycarotenoid dioxygenases (NCEDs), involved in the initial steps of ABA biosynthesis, indicate that decreased xanthophyll levels are compensated by the induction of the third PSY gene. Furthermore, OsPSY3 and the OsNCEDs investigated were also induced by the application of ABA, indicating positive feedback regulation. The regulatory differences are mirrored by cis-acting elements in the corresponding promoter regions, with light-responsive elements for OsPSY1 and OsPSY2 and an ABA-response element as well as a coupling element for OsPSY3. The investigation of the gene structures and 5' untranslated regions revealed that OsPSY1 represents a descendant of an ancient PSY gene present in the common ancestor of monocots and dicots. Since the genomic structures of OsPSY2 and OsPSY3 are comparable, we conclude that they originated from the most recent common ancestor, OsPSY1.


Subject(s)
Abscisic Acid/biosynthesis , Alkyl and Aryl Transferases/metabolism , Carotenoids/biosynthesis , Oryza/enzymology , Plant Roots/enzymology , Alkyl and Aryl Transferases/genetics , Cloning, Molecular , Dioxygenases , Feedback, Physiological , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Light , Oryza/genetics , Oryza/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Plant Proteins , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...