Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.560
Filter
1.
Talanta ; 278: 126491, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38955103

ABSTRACT

BACKGROUND: To date, clinical laboratories face challenges in quantifying retinol from DBS samples. Disputes arise throughout the whole detection process, encompassing the storage condition, the release strategy as well as the selection of internal standards. METHODS: We incubated DBS with ascorbic acid solution. Then, retinol-d4 in acetonitrile was introduced to incorporate isotopic internal standard and promote protein precipitation. Afterward, sodium carbonate solution was added to ionize cytochromes (such as bilirubin), which amplified the difference of their hydrophobicity to retinol. Subsequently, cold-induced phase separation could be facilitated to separate retinol from the impurities. In the end, the upper layer was injected for LC-MS/MS analysis. RESULTS: By comparing the detected retinol content in whole blood and DBS samples prepared from the same volume, we confirmed the established pretreatment was capable to extract most of retinol from DBS (recovery >90 %). Thereafter, we verified that within DBS, retinol possessed satisfying stability without antioxidation. Indoor-light exposure and storage duration would not cause obvious degradation (<10 %). Following systematic validation, the established method well met the criteria outlined in the relevant guidelines. After comparing with detected DBS results to the paired plasma samples, 54 out of 60 met the acceptance limit for cross-validation of ±20 %. CONCLUSIONS: We realized precise quantification of retinol from one 3.2 mm DBS disc. By circumventing conventional antioxidation, liquid-liquid/solid-phase extraction and organic solvent evaporation, the pretreatment could be completed within 15 min consuming only minimal amounts of low-toxicity chemicals (ascorbic acid, acetonitrile, and sodium carbonate). We expect this contribution holds the potential to significantly facilitate the evaluation of patients' vitamin A status by using DBS samples in the future.

2.
Pak J Med Sci ; 40(6): 1158-1162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952517

ABSTRACT

Objective: To determine the impacts to research the impacts of pain's Specialized Pain Management Nursing Care in the perioperative period on pain symptoms and life quality of patients experiencing minimally invasive surgery for spinal injury. Method: Eighty patients with a spinal injury who underwent minimally invasive surgery in the Department of Orthopedics of Baoding No.1 Hospital from January 2018 to December 2021 were retrospectively analyzed. They were split into two groups following different nursing methods (n=40 each group). Specialized Pain Management Nursing Care were given to patients in the observation group. Those in the control group were given treated with routine care. Their pain score and nursing effect were compared, after which their quality of life, daily living ability and complication rate compared and analyzed. Results: The pain degree in the control group was considerably more than that in the observation group in the 1st postoperative period. The pain degree, which decreased in both groups, slumped more significantly in the observation group on the 2nd and 3rd postoperative days. The postoperative hospital stays and pain duration in the observation group were shorter than those in the control group (P<0.05), and the nursing effect was significantly better than that in the control group (P<0.05). After postoperative nursing intervention. Conclusion: Minimally invasive surgery integrated with the Specialized Pain Management Nursing Care can remarkably ameliorate pain after spinal injury surgery, reducing complications' incidence, and improving the life quality for patients.

3.
Biochim Biophys Acta Mol Basis Dis ; : 167329, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960053

ABSTRACT

Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.

4.
J Gene Med ; 26(7): e3715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962887

ABSTRACT

BACKGROUND: The present study aimed to dissect the cellular complexity of Crohn's disease (CD) using single-cell RNA sequencing, focusing on identifying key cell populations and their transcriptional profiles in inflamed tissue. METHODS: We applied scRNA-sequencing to compare the cellular composition of CD patients with healthy controls, utilizing Seurat for clustering and annotation. Differential gene expression analysis and protein-protein interaction networks were constructed to identify crucial genes and pathways. RESULTS: Our study identified eight distinct cell types in CD, highlighting crucial fibroblast and T cell interactions. The analysis revealed key cellular communications and identified significant genes and pathways involved in the disease's pathology. The role of fibroblasts was underscored by elevated expression in diseased samples, offering insights into disease mechanisms and potential therapeutic targets, including responses to ustekinumab treatment, thus enriching our understanding of CD at a molecular level. CONCLUSIONS: Our findings highlight the complex cellular and molecular interplay in CD, suggesting new biomarkers and therapeutic targets, offering insights into disease mechanisms and treatment implications.


Subject(s)
Crohn Disease , Single-Cell Analysis , Ustekinumab , Crohn Disease/genetics , Crohn Disease/drug therapy , Humans , Ustekinumab/therapeutic use , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Protein Interaction Maps , Fibroblasts/metabolism , Biomarkers , Female , Transcriptome , Adult , Male , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Treatment Outcome , Sequence Analysis, RNA/methods , Gene Regulatory Networks
5.
Small ; : e2402655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949408

ABSTRACT

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

6.
PLoS One ; 19(7): e0306699, 2024.
Article in English | MEDLINE | ID: mdl-38985727

ABSTRACT

In order to optimize the spectrum allocation strategy of existing wireless communication networks and improve information transmission efficiency and data transmission security, this study uses the independent correlation characteristics of chaotic time series to simulate the collection and control strategy of bees, and proposes an artificial bee colony algorithm based on uniform mapping and collaborative collection control. Furthermore, it proposes an artificial bee colony algorithm based on uniform mapping and collaborative collection and control. The method begins by establishing a composite system of uniformly distributed Chebyshev maps. In the neighborhood intervals where the nectar sources are firmly connected and relatively independent, the algorithm then conducts a chaotic traversal search. The research results demonstrated the great performance of the suggested algorithm in each test function as well as the positive effects of the optimization search. The network throughput rate was over 300 kbps, the quantity of security service eavesdropping was below 0.1, and the spectrum utilization rate of the algorithm-based allocation method could be enhanced to 0.8 at the most. Overall, the performance of the proposed algorithm outperformed the comparison algorithm, with high optimization accuracy and a significant amount of optimization. This is favorable for the efficient use of spectrum resources and the secure transmission of communication data, and it encourages the development of spectrum allocation technology in wireless communication networks.


Subject(s)
Algorithms , Computer Communication Networks , Wireless Technology , Bees/physiology , Animals , Computer Security
7.
Oncol Lett ; 28(3): 413, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988449

ABSTRACT

T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.

8.
Adv Mater ; : e2403685, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994679

ABSTRACT

The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging. This study investigates the origin of exchange bias in MnPS3/Fe3GeTe2 van der Waals heterostructures, demonstrating a method to modulate nearly 1000% variation in magnitude through simple thermal cycling. Despite the compensated interfacial spin configuration of MnPS3, a substantial 170 mT exchange bias is observed at 5 K, one of the largest observed in van der Waals heterostructures. This significant exchange bias is linked to anomalous weak ferromagnetic ordering in MnPS3 below 40 K. The tunability of exchange bias during thermal cycling is attributed to the amorphization and changes in the van der Waals gap during field cooling. The findings highlight a robust and adjustable exchange bias in van der Waals heterostructures, presenting a straightforward method to enhance other interface-related spintronic phenomena for practical applications. Detailed interface analysis reveals atom migration between layers, forming amorphous regions on either side of the van der Waals gap, emphasizing the importance of precise interface characterization in these heterostructures.

9.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978228

ABSTRACT

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

10.
World J Clin Cases ; 12(19): 3931-3935, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994300

ABSTRACT

BACKGROUND: Postoperative abdominal infections are an important and heterogeneous health challenge. Many samll abdominal abscesses are resolved with antibiotics, but larger or symptomatic abscesses may require procedural management. CASE SUMMARY: A 65-year-old male patient who suffered operation for the left hepatocellular carcinoma eight months ago, came to our hospital with recurrent abdominal pain, vomit, and fever for one month. Abdominal computed tomography showed that a big low-density dumbbell-shaped mass among the liver and intestine. Colonoscopy showed a submucosal mass with a fistula at colon of liver region. Gastroscopy showed a big rupture on the submucosal mass at the descending duodenum and a fistula at the duodenal bulb. Under colonoscopy, the brown liquid and pus were drained from the mass with "special stent device". Under gastroscopy, we closed the rupture of the mass with a loop and six clips for purse stitching at the descending duodenum, and the same method as colonoscopy was used to drain the brown liquid and pus from the mass. The symptom of abdominal pain, vomit and fever were relieved after the treatment. CONCLUSION: The special stent device could be effectively for draining the abdominal abscess respectively from colon and duodenum.

11.
World J Clin Cases ; 12(19): 4016-4021, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994297

ABSTRACT

BACKGROUND: Venous air embolism (VAE) is a potentially lethal condition, with a reported incidence rate of about 0.13%, and the true incidence may be higher since many VAE are asymptomatic. The current treatments for VAE include Durant's maneuver, aspiration and removal of air through venous catheters, and hyperbaric oxygen therapy. For critically ill patients, use of cardiotonic drugs and chest compressions remain useful strategies. The wider availability of extracorporeal membrane oxygenation (ECMO) has brought a new option for VAE patients. CASE SUMMARY: A 53-year-old female patient with VAE presented to the emergency clinic due to abdominal pain with fever for 1 d and unconsciousness for 2 h. One day ago, the patient suffered from abdominal pain, fever, and diarrhea. She suddenly became unconscious after going to the toilet during the intravenous infusion of ciprofloxacin 2 h ago, accompanied by nausea and vomiting, during which a small amount of gastric contents were discharged. She was immediately sent to a local hospital, where cranial and chest computed tomography showed bilateral pneumonia as well as accumulated air visible in the right ventricle and pulmonary artery. The condition deteriorated despite endotracheal intubation, rehydration, and other treatments, and the patient was then transferred to our hospital. Veno-arterial ECMO was applied in our hospital, and the patient's condition gradually improved. The patient was successfully weaned from ECMO and extubated after two days. CONCLUSION: ECMO may be an important treatment for patients with VAE in critical condition.

12.
J Am Chem Soc ; 146(28): 19128-19136, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953716

ABSTRACT

Oscillations in the chemical or physical properties of materials, composed of an odd or even number of connected repeating methylene units, are a well-known phenomenon in organic chemistry and materials science. So far, such behavior has not been reported for the important class of materials, perovskite semiconductors. This work reports a distinct odd-even oscillation of the molecular structure and charge carrier transport properties of phenylalkylammonium two-dimensional (2D) Sn-based perovskites in which the alkyl chains in the phenylalkylammonium cations contain varying odd and even carbon numbers. Density functional theory calculations and grazing-incidence wide-angle X-ray scattering characterization reveal that perovskites with organic ligands containing an alkyl chain with an odd number of carbon atoms display a disordered crystal lattice and tilted inorganic octahedra accompanied by reduced mobilities. In contrast, perovskites with cations of an even number of carbon atoms in the alkyl chain form more ordered crystal structures, resulting in improved charge carrier mobilities. Our findings disclose the importance of minor changes in the molecular conformation of organic cations have an effect on morphology, photophysical properties, and charge carrier transport of 2D layered perovskites, showcasing alkyl chain engineering of organic cations to control key properties, of layered perovskite semiconductors.

13.
Nano Lett ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038175

ABSTRACT

Localized surface plasmon resonances (LSPRs) can enhance the electromagnetic fields on metallic nanostructures upon light illumination, providing an approach for manipulating light-matter interactions at the sub-wavelength scale. However, currently, there is no thorough investigation of the physical mechanism in the dynamic formation of the strongly coupled LSPRs on sub-5 nm plasmonic cavities at the sub-picosecond scale. In this work, through femtosecond broadband transient absorption spectroscopy, we reveal the dynamic ultrastrong coupling processes in a nanoparticle-in-trench (NPiT) structure containing 2 nm gap cavities, and demonstrate a coherent motional coupling between vibrating AuNPs and the nanogaps. We achieve a maximum Rabi splitting energy of ∼660 meV in the sub-picosecond hot-electron relaxation time scale under the resonant excitation of the nanogap cavity's LSPR, reaching the ultrastrong coupling regime. This leads to a change of global vibration modes for the 2 nm gap cavity, potentially related to the dynamical Casimir effect with nanogap resonators.

14.
J Am Chem Soc ; 146(29): 19886-19895, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990188

ABSTRACT

Single-atom catalysts (SACs) open up new possibilities for advanced technologies. However, a major complication in preparing high-density single-atom sites is the aggregation of single atoms into clusters. This complication stems from the delicate balance between the diffusion and stabilization of metal atoms during pyrolysis. Here, we present pressure-controlled metal diffusion as a new concept for fabricating ultra-high-density SACs. Reducing the pressure inhibits aggregation substantially, resulting in almost three times higher single-atom loadings than those obtained at ambient pressure. Molecular dynamics and computational fluid dynamics simulations reveal the role of a metal hopping mechanism, maximizing the metal atom distribution through an increased probability of metal-ligand binding. The investigation of the active site density by electrocatalytic oxygen reduction validates the robustness of our approach. The first realization of Ullmann-type carbon-oxygen couplings catalyzed on single Cu sites demonstrates further options for efficient heterogeneous catalysis.

15.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3050-3060, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041165

ABSTRACT

To investigate the impact and potential mechanisms of extracts from different parts of Liparis nervosa on neuroinflammation by lipopolysaccharide(LPS)-induced BV-2 microglial cells. The materials of L. nervosa were subjected to crushing, ethanol extraction, and concentration to obtain an alcohol extract. Subsequently, the extract was further extracted to obtain petroleum ether extract, ethyl acetate extract, N-butanol extract, and aqueous phase extract. The ethyl acetate extract was separated into distillate(1)-(6)using D101 macroporous resin column chromatography. The experiment was divided into control group, LPS model group, L. nervosa extract group, and LPS + L. nervosa group. LPS was utilized to induce a neuroinflammatory cell model in BV-2 microglial cells. The Griess test was utilized for detecting the production of nitric oxide(NO) in the cell supernatant. Cell viability was detected by MTT assay. The release of interleukin-6(IL-6) and tumor necrosis factor alpha(TNF-α) in the cell supernatant was quantified using ELISA.RT-qPCR was utilized to assess the m RNA levels of pro-inflammatory cytokines inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), interleukin( IL)-6, IL-1ß, and TNF-α. The protein expression of i NOS, COX-2, nuclear factor kappa-B p65(p65), p-p65, extracellular signal-regulated kinase(ERK), p-ERK, c-jun N-terminal kinase(JNK), p-JNK, p38 mitogen-activated protein kinase(p38), and p-p38 MAPK(p-p38) were also evaluated by Western blot. The chemical composition of active substances in L. nervosa was analyzed using the UHPLC-Q-Exactive Orbitrap technology and literature comparison. Our findings indicate that extracts from different parts of L. nervosa exhibit a significant reduction in the release of NO from LPS-induced BV-2 microglial cells.Specifically, the ethyl acetate extract demonstrates the most notable inhibitory effect without causing cell toxicity. Additionally, the distillate(6) extracted from the ethyl acetate exhibits a reduction in the m RNA and protein levels of i NOS, COX-2, IL-6, IL-1ß, and TNF-α in a dose-dependent manner, and it inhibits the protein expression of p-p65, p-ERK, p-p38, and p-JNK in LPS-induced BV-2 microglial cells. A total of 79 compounds in the distillate(6) were identified by mass spectrometry, including 12 confirmed compounds with anti-inflammatory effects. This study confirmed the remarkable efficacy of L. nervosa extract in the treatment of neuroinflammation, which may be achieved through the inhibition of NF-κB and MAPK signaling pathways.


Subject(s)
Lipopolysaccharides , Microglia , Microglia/drug effects , Microglia/metabolism , Animals , Mice , Nitric Oxide/metabolism , Neuroinflammatory Diseases/drug therapy , Cell Survival/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Line , Interleukin-6/genetics , Interleukin-6/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946486

ABSTRACT

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Subject(s)
Antineoplastic Agents , Drug Design , Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Patents as Topic , Protein Kinase Inhibitors , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Drug Development , Chemistry, Pharmaceutical , Molecular Targeted Therapy
17.
Int Breastfeed J ; 19(1): 46, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956574

ABSTRACT

BACKGROUND: Limited research has explored the associations of gestational age (GA) and breastfeeding practices with growth and nutrition in term infants. METHODS: This multicenter cross-sectional study recruited 7299 singleton term infants from well-child visits in Shandong, China, between March 2021 and November 2022. Data on GA, gender, ethnicity, birth weight, parental heights, gestational diabetes and hypertension, age at visit, breastfeeding practices (point-in-time data at visit for infants < 6 months and retrospective data at 6 months for infants ≥ 6 months), complementary foods introduction, infant length and weight, were collected. 7270 infants were included in the analysis after excluding outliers with Z-scores of length (LAZ), weight or weight for length (WLZ) <-4 or > 4. Linear regression models adjused for covariates explored the impact of GA and breastfeeding practices on LAZ and WLZ, while logistic regression models evaluated their effect on the likelihood of moderate and severe stunting (MSS, LAZ<-2), moderate and severe acute malnutrition (MSAM, WLZ<-2) and overweight/obesity (WLZ > 2). Sensitivity analysis was conducted on normal birth weight infants (2.5-4.0 kg). RESULTS: Infants born early-term and exclusively breastfed accounted for 31.1% and 66.4% of the sample, respectively. Early-term birth related to higher WLZ (< 6 months: ß = 0.23, 95% confidence interval (CI): 0.16, 0.29; ≥6 months: ß = 0.12, 95% CI: 0.04, 0.20) and an increased risk of overweight/obesity throughout infancy (< 6 months: OR: 1.41, 95% CI 1.08, 1.84; ≥6 months: OR: 1.35, 95% CI 1.03, 1.79). Before 6 months, early-term birth correlated with lower LAZ (ß=-0.16, 95% CI: -0.21, -0.11) and an increased risk of MSS (OR: 1.01, 95%CI 1.00, 1.02); Compared to exclusive breastfeeding, exclusive formula-feeding and mixed feeding linked to lower WLZ (ß=-0.15, 95%CI -0.30, 0.00 and ß=-0.12, 95%CI -0.19, -0.05, respectively) and increased risks of MSAM (OR: 5.57, 95%CI 1.95, 15.88 and OR: 3.19, 95%CI 1.64, 6.19, respectively). Sensitivity analyses confirmed these findings. CONCLUSIONS: The findings emphasize the health risks of early-term birth and the protective effect of exclusive breastfeeding in singleton term infants, underscoring the avoidance of nonmedically indicated delivery before 39 weeks and promoting exclusive breastfeeding before 6 months.


Subject(s)
Breast Feeding , Humans , Breast Feeding/statistics & numerical data , Cross-Sectional Studies , Female , Male , Infant, Newborn , Infant , China/epidemiology , Gestational Age , Infant Nutritional Physiological Phenomena , Term Birth , Retrospective Studies , Adult , Nutritional Status
18.
Front Endocrinol (Lausanne) ; 15: 1404697, 2024.
Article in English | MEDLINE | ID: mdl-38982993

ABSTRACT

Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.


Subject(s)
Adipogenesis , Autophagy , Inflammation , Oxidative Stress , Adipogenesis/physiology , Humans , Autophagy/physiology , Oxidative Stress/physiology , Inflammation/metabolism , Inflammation/pathology , Animals , Adipocytes/metabolism , Adipocytes/pathology , Obesity/metabolism , Obesity/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology
19.
Front Genet ; 15: 1383333, 2024.
Article in English | MEDLINE | ID: mdl-38983268

ABSTRACT

Purpose: Major depressive disorder (MDD) and venous thromboembolism (VTE) may be linked in observational studies. However, the causal association remains ambiguous. Therefore, this study investigates the causal associations between them. Methods: We performed a two-sample univariable and multivariable bidirectional Mendelian randomization (MR) analysis to evaluate the associations between MDD and VTE. The summary genetic associations of MDD statistics were obtained from the Psychiatric Genomics Consortium and UK Biobank. Information on VTE, deep vein thrombosis (DVT), and pulmonary embolism (PE) were obtained from the FinnGen Biobank. Inverse-variance weighting was used as the main analysis method. Other methods include weighted median, MR-Egger, Simple mode, and Weighted mode. Results: Univariable MR analysis revealed no significant associations between MDD and VTE risk (odds ratio (OR): 0.936, 95% confidence interval (CI): 0.736-1.190, p = 0.590); however, after adjusting the potential relevant polymorphisms of body mass index and education, the multivariable MR analysis showed suggestive evidence of association between them (OR: 1.163, 95% CI: 1.004-1.346, p = 0.044). Univariable MR analysis also revealed significant associations between MDD and PE risk (OR: 1.310, 95% CI: 1.073-1.598, p = 0.008), but the association between them was no longer significant in MVMR analysis (p = 0.072). We found no significant causal effects between MDD and DVT risk in univariable or multivariable MR analyses. There was also no clear evidence showing the causal effects between VTE, PE, or DVT and MDD risk. Conclusion: We provide suggestive genetic evidence to support the causal association between MDD and VTE risk. No causal associations were observed between VTE, PE, or DVT and MDD risk. Further validation of these associations and investigations of potential mechanisms are required.

20.
World J Clin Cases ; 12(18): 3515-3528, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983402

ABSTRACT

BACKGROUND: Iron deficiency anemia (IDA) is a prevalent nutritional disorder during pregnancy. Clinical studies indicate that incorporating Chinese patent medicines (CPMs) with oral iron (OI) in treating IDA in pregnancy can reduce adverse effects and improve clinical outcomes. Nonetheless, the comparative efficacy of different CPMs remains unclear. AIM: To assess the safety and effectiveness of different CPMs for treating IDA during pregnancy using network meta-analysis. METHODS: We conducted a search for randomized controlled trials (RCTs) that combined CPM and OI for IDA treatment in pregnancy, spanning from 2013 to the present. Data analysis was performed using Rev Man 5.3 and Stata 14.0 on literature that satisfied the quality criteria. RESULTS: The analysis included 45 RCTs, encompassing 4422 pregnant patients with IDA. Six CPMs were examined, including Shengxuebao Mixture, Shengxuening Tablets (SXN), Yiqi Weixue CPMs (YQWX), Jianpi Shengxue CPMs (JPSX), Yiqi Buxue Tablets, and Compound Hongyi Buxue Oral Liquid (FFHY). Findings indicated that FFHY + OI significantly improved the clinical effective rate. SXN + OI was most effective in boosting red blood cells counts and hemoglobin levels. YQWX + OI showed superior results in improving serum ferritin, and SXN + OI was most effective in increasing serum iron levels. JPSX + OI was optimal in reducing adverse pregnancy outcomes, while YQBX + OI effectively minimized adverse events. A cluster analysis suggested that SXN + OI could be the potentially optimal therapeutic regimen for IDA in pregnancy. CONCLUSION: This study demonstrates that the combination of OI with CPMs offers better outcomes than OI alone. Based on clinical efficacy and other measured outcomes, SXN + OI emerges as the most effective treatment modality for improving the health of pregnant patients with IDA.

SELECTION OF CITATIONS
SEARCH DETAIL
...