Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.190
Filter
1.
Nano Lett ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072414

ABSTRACT

The dynamics of ion transport at the interface is the critical factor for determining the performance of an electrochemical energy storage device. While practical applications are realized in concentrated electrolytes and nanopores, there is a limited understanding of their ion dynamic features. Herein, we studied the interfacial ion dynamics in room-temperature ionic liquids by transient single-particle imaging with microsecond-scale resolution. We observed slowed-down dynamics at lower potential while acceleration was observed at higher potential. Combined with simulation, we found that the microstructure evolution of the electric double layer (EDL) results in potential-dependent kinetics. Then, we established a correspondence between the ion dynamics and interfacial ion composition. Besides, the ordered ion orientation within EDL is also an essential factor for accelerating interfacial ion transport. These results inspire us with a new possibility to optimize electrochemical energy storage through the good control of the rational design of the interfacial ion structures.

2.
Virol Sin ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067791

ABSTRACT

Respiratory syncytial virus (RSV) is the main pathogen that causes hospitalization for acute lower respiratory tract infections (ALRIs) in children. With the reopening of communities and schools, the resurgence of RSV in the COVID-19 post-pandemic era has become a major concern. To understand the circulation patterns and genotype variability of RSV in Tianjin before and during the COVID-19 pandemic, a total of 19,531 nasopharyngeal aspirate samples from hospitalized children in Tianjin from July 2017 to June 2022 were evaluated. Direct immunofluorescence and polymerase chain reaction (PCR) were used for screening RSV-positive samples and subtyping, respectively. Further analysis of mutations in the second hypervariable region (HVR2) of the G gene was performed through Sanger sequencing. Our results showed that 16.46% (3,215/19,531) samples were RSV positive and a delayed increase in the RSV infection rates occurred in the winter season from December 2020 to February 2021, with the average RSV-positive rate of 35.77% (519/1,451). The ON1, with H258Q and H266L substitutions, and the BA9, with T290I and T312I substitutions, are dominant strains that alternately circulate every 1-2 years in Tianjin, China, from July 2017 to June 2022. In addition, novel substitutions, such as N296Y, K221T, N230K, V251A in the BA9 genotype, and L226I in the ON1 genotype, emerged during the COVID-19 pandemic. Analysis of clinical characteristics indicated no significant differences between RSV-A and RSV-B groups. This study provides a theoretical basis for clinical prevention and treatment. However, further studies are needed to explore the regulatory mechanism of host immune responses to different lineages of ON1 and BA9 in the future.

3.
CNS Neurosci Ther ; 30(7): e14886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072940

ABSTRACT

BACKGROUND: Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS: Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS: Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS: These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.


Subject(s)
Antioxidants , Hydrogen Peroxide , Neurons , Oxidative Stress , Ubiquinone , Animals , Oxidative Stress/drug effects , Mice , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Antioxidants/pharmacology , Hydrogen Peroxide/toxicity , Neurons/drug effects , Neurons/pathology , Cell Line, Tumor , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Survival/drug effects , Cell Survival/physiology , tau Proteins/metabolism , Neuroprotective Agents/pharmacology , Galactose/toxicity , Drug Therapy, Combination
4.
Foods ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063386

ABSTRACT

An innovative iron supplement crucial for treating iron-deficiency anemia was developed in this study. Polysaccharide was extracted from Eucommia ulmoides leaves using a microwave-assisted hot water method, and subsequently, the polysaccharide-iron complex was synthesized through co-thermal synthesis with FeCl3. The physicochemical properties, structure, and thermal stability of the complex were analyzed using FE-SEM, SEC-MALLS, FT-IR, XRD, and DSC techniques. Furthermore, the antioxidant activity of the polysaccharide-iron complex was evaluated through an experiment in vitro. The results revealed that the polysaccharide-iron complex had an iron content of 6.1% and an average particle size of 860.4 nm. The microstructure analysis indicated that the polysaccharide-iron complex possessed a flaky morphology with smooth and compact surfaces. Moreover, the formation of the Fe3+ complex did not alter the structural framework of the polysaccharide; instead, it enhanced the polysaccharide's thermal stability. Compared to traditional iron supplements, the E. ulmoides-derived polysaccharide-iron complex demonstrated significant antioxidant activity. Therefore, this novel compound exhibits significant potential as a viable iron supplement.

5.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064720

ABSTRACT

The visceral adiposity index (VAI) and handgrip strength (HGS) are identified as important objectives for the prevention of illness. Nevertheless, there is limited understanding regarding the impact of the VAI and HGS on cardiometabolic multimorbidity (CMM). We aimed to ascertain the impact of the VAI and HGS on CMM among middle-aged and older people. Data spanning from 2011 to 2020 were derived from the China Health and Retirement Longitudinal Study (CHARLS). In total, 7909 individuals aged 45 years and older were included. Cox proportional hazard regression was utilized to examine the correlation among the VAI, HGS, and CMM. Throughout the 10-year follow-up, we determined that both the VAI (HR = 1.330; 95%CI = 1.179-1.500) and HGS (HR = 0.745, 95%CI = 0.645-0.861) exhibited significant associations with CMM risk. Individuals exposed to both a high VAI and low HGS were found to have higher hazards of CMM (HR = 1.377, 95%CI = 1.120-1.694) in contrast to participants exposed to one or none of these conditions. The older (HR = 1.414; 95%CI = 1.053-1.899) and male (HR = 1.586; 95%CI = 1.114-2.256) groups are more likely to experience CMM risk. Our findings suggest that both the VAI and HGS have significant effects on CMM risk. Appropriate interventions focused on vulnerable groups are recommended to prevent the incidence of CMM.


Subject(s)
Hand Strength , Multimorbidity , Humans , Male , Middle Aged , Female , Aged , Longitudinal Studies , China/epidemiology , Obesity, Abdominal/epidemiology , Intra-Abdominal Fat , Cardiovascular Diseases/epidemiology , Proportional Hazards Models
6.
Sensors (Basel) ; 24(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066032

ABSTRACT

In the field of rice processing and cultivation, it is crucial to adopt efficient, rapid and user-friendly techniques to detect the flavor values of various rice varieties. The conventional methods for flavor value assessment mainly rely on chemical analysis and technical evaluation, which not only deplete the rice resources but also incur significant time and labor costs. In this study, hyperspectral imaging technology was utilized in combination with an improved Particle Swarm Optimization Support Vector Machine (PSO-SVM) algorithm, i.e., the Grid Iterative Search Particle Swarm Optimization Support Vector Machine (GISPSO-SVM) algorithm, introducing a new non-destructive technique to determine the flavor value of rice. The method captures the hyperspectral feature data of different rice varieties through image acquisition, preprocessing and feature extraction, and then uses these features to train a model using an optimized machine learning algorithm. The results show that the introduction of GIS algorithms in a PSO-optimized SVM is very effective and can improve the parameter finding ability. In terms of flavor value prediction accuracy, the Principal Component Analysis (PCA) combined with the GISPSO-SVM algorithm achieved 96% accuracy, which was higher than the 93% of the Competitive Adaptive Weighted Sampling (CARS) algorithm. And the introduction of the GIS algorithm in different feature selection can improve the accuracy to different degrees. This novel approach helps to evaluate the flavor values of new rice varieties non-destructively and provides a new perspective for future rice flavor value detection methods.

7.
J Biol Chem ; 300(8): 107530, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971310

ABSTRACT

Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.

8.
Discov Oncol ; 15(1): 305, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048774

ABSTRACT

OBJECTIVE: The prognostic factors of diffuse GC patients were screened the prognostic nomogram was constructed, and the prediction accuracy was verified. METHODS: From 2006 to 2018, there were 2877 individuals pathologically diagnosed with diffuse gastric cancer; the clinicopathological features of these patients were obtained from the SEER database & randomly divided into a training cohort (1439) & validation cohort (1438).To create prognostic nomograms & choose independent prognostic indicators to predict the overall survival (OS) of 1, 3, & 5 years, log-rank & multivariate COX analysis were utilized & discrimination ability of nomogram prediction using consistency index and calibration curve. RESULTS: Age, T, N, M, TNM, surgical status, chemotherapy status, & all seven markers were independent predictors of OS (P < 0.05), & a nomogram of OS at 1, 3, & 5 years was created using these independent predictors. The nomogram's c-index was 0.750 (95% CI 0.734 ~ 0.766), greater than the TNM staging framework 0.658 (95%CI 0.639 ~ 0.677); the c-index was 0.753 (95% CI 0.737 ~ 0.769) as well as superior to the TNM staging mechanism 0.679 (95% CI 0.503-0.697). According to the calibration curve, the projected survival rate using the nomogram & the actual survival rate are in good agreement. CONCLUSIONS: Prognostic nomograms are useful tools for physicians to assess every individual's individualised prognosis & create treatment strategies for those with diffuse gastric cancer. They can reliably predict the prognosis for individuals with diffuse gastrointestinal carcinoma.

9.
J Biomater Sci Polym Ed ; : 1-17, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953307

ABSTRACT

In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO2 precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO2, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.

10.
J Asian Nat Prod Res ; : 1-18, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953392

ABSTRACT

Boswellia sacra has the properties of activating blood circulation, fixing pain, subduing swelling and promoting muscle growth. However, the anti-inflammatory active ingredients and molecular mechanisms of Boswellia sacra are still not clearly explored. Boswellia sacra was grounded and extracted using 95% ethanol, the extracts were separated by column chromatography preparation to give compounds. Spectral analysis and quantum calculations confirmed the structures of compounds and identified compound 1 as a new compound. Compounds 1-3 showed potent inhibitory activities and their effects on inflammatory mediator NO and inflammatory cytokines were examined by ELISA assay. Furthermore, their modulatory mechanism on inflammatory signal pathways was explored.

11.
Angew Chem Int Ed Engl ; : e202409774, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953785

ABSTRACT

Anionic chemistry modulation represents a promising avenue to enhance the electrochemical performance and unlock versatile applications in cutting-edge energy storage devices. Herein, we propose a methodology that involves anionic chemistry of carbonate anions to tailor the electrochemical oxidation-reduction reactions of bismuth (Bi) electrodes, where the conversion energy barrier for Bi (0) to Bi (III) has been significantly reduced, endowing anionic full batteries with enhanced electrochemical kinetics and chemical self-charging property. The elaborately designed batteries with an air-switch demonstrate rapid self-recharging capabilities, recovering over 80% of the electrochemical full charging capacity within a remarkably short timeframe of 1 hour and achieving a cumulative self-charging capacity of 5 Ah g-1. The aqueous self-charging battery strategy induced by carbonate anion, as proposed in this study, holds the potential for extending to various anionic systems, including seawater-based Cl- ion batteries. This work offers a universal framework for advancing next-generation multi-functional power sources.

12.
Plast Reconstr Surg ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38954654

ABSTRACT

BACKGROUND: Silicone metacarpophalangeal joint arthroplasty (SMPA) can reconstruct metacarpophalangeal (MCP) joint deformities in the rheumatoid hand, but patient selection criteria for the procedure remains unclear. We used statistical learning to elucidate patient selection criteria that will enhance long-term patient-reported and functional outcomes in patients with severe hand rheumatoid arthritis (RA). METHODS: This is a secondary analysis of a prospective study of 169 adults with severe hand RA (average combined ulnar deviation (UD) and extensor lag (EL) at the MCP joint ≥ 50 degrees, per finger) with one-year follow-up, conducted at three centers in the United States and England from January 1, 2004, to December 31, 2011. Primary outcomes were Michigan Hand Outcomes Questionnaire (MHQ) pain sub-score, changes in EL, UD, and Arthritis Impact Measurement Scale (AIMS2) score. A tree-based reinforcement learning (T-RL) model was used to estimate clinical decision rules for treatment. RESULTS: 132 patients (mean[SD], 61[9] years; 108[72%] female) were included in the SMPA (n=50) and non-SMPA (n=82) cohorts. To minimize EL and UD, patients should undergo SMPA. To minimize pain, patients older than 55 should undergo SMPA. To increase hand-related quality-of-life (QOL), patients with grip strength <12 kg should undergo SMPA. Estimations with imputed missing data were similar, aside from a lower grip strength (<8 kg) threshold for hand-related QOL. CONCLUSION: Unless there is significant comorbidity that precludes surgery, most patients older than 55 with severe hand RA will have improved QOL, pain, and function after SMPA. Patients with preserved grip strength may benefit from continued medical management.

13.
Heliyon ; 10(12): e32494, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948030

ABSTRACT

Objective: To explore the potential targets for melatonin in the treatment of periodontitis through network pharmacologic analysis and experimental validation via in vivo animal models and in vitro cellular experiments. Materials and methods: In this study, we first screened melatonin targets from Pharm Mapper for putative targets, Drug Bank, and TCMSP databases for known targets. Then, disease database was searched and screened for differential expressed genes associated with periodontitis. The intersection of disease and melatonin-related genes yielded potential target genes of melatonin treatment for periodontitis. These target genes were further investigated by protein-protein interaction network and GO/KEGG enrichment analysis. In addition, the interactions between melatonin and key target genes were interrogated by molecular docking simulations. Then, we performed animal studies to validate the therapeutic effect of melatonin by injecting melatonin into the peritoneal cavity of ligation-induced periodontitis (LIP) mice. The effects of melatonin on the predicted target proteins were also analyzed using Western blot and immunofluorescence techniques. Finally, we constructed an in vitro cellular model and validated the direct effect of melatonin on the predicted targets by using qPCR. Results: We identified 8 potential target genes by network pharmacology analysis. Enrichment analysis suggests that melatonin may treat periodontitis by inhibiting the expression of three potential targets (MPO, MMP8, and MMP9). Molecular docking results showed that melatonin could effectively bind to MMP8 and MMP9. Subsequently, melatonin was further validated in a mouse LIP model to inhibit the expression of MPO, MMP8, and MMP9 in the periodontal tissue. Finally, we verified the direct effect of melatonin on the mRNA expression of MPO, MMP8, and MMP9 in an in vitro cellular model. Conclusions: Through a combination of network pharmacology and experimental validation, this study provides a more comprehensive understanding of the mechanism of melatonin to treat periodontitis. Our study suggests that MPO, MMP8, and MMP9 as key target genes of melatonin to treat periodontitis. These findings present a more comprehensive basis for further investigation into the mechanisms of pharmacological treatment of periodontitis by melatonin.

14.
Cancer Innov ; 3(1): e95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38948536

ABSTRACT

Background: Since RNA sequencing has shown that induced pluripotent stem cells (iPSCs) share a common antigen profile with tumor cells, cancer vaccines that focus on iPSCs have made promising progress in recent years. Previously, we showed that iPSCs derived from leukemic cells of patients with primary T cell acute lymphoblastic leukemia (T-ALL) have a gene expression profile similar to that of T-ALL cell lines. Methods: Mice with T-ALL were treated with dendritic and T (DC-T) cells loaded with intact and complete antigens from T-ALL-derived iPSCs (T-ALL-iPSCs). We evaluated the safety and antitumor efficiency of autologous tumor-derived iPSC antigens by flow cytometry, cytokine release assay, acute toxicity experiments, long-term toxicity experiments, and other methods. Results: Our results indicate that complete tumor antigens from T-ALL-iPSCs could inhibit the growth of inoculated tumors in immunocompromised mice without causing acute and long-term toxicity. Conclusion: T-ALL-iPSC-based treatment is safe and can be used as a potential strategy for leukemia immunotherapy.

15.
Regen Biomater ; 11: rbae044, 2024.
Article in English | MEDLINE | ID: mdl-38962115

ABSTRACT

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

16.
Asia Pac J Clin Nutr ; 33(3): 348-361, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965722

ABSTRACT

BACKGROUND AND OBJECTIVES: We aim to establish deep learning models to optimize the individualized energy delivery for septic patients. METHODS AND STUDY DESIGN: We conducted a study of adult septic patients in ICU, collecting 47 indicators for 14 days. We filtered out nutrition-related features and divided the data into datasets according to the three metabolic phases proposed by ESPEN: acute early, acute late, and rehabilitation. We then established optimal energy target models for each phase using deep learning and conducted external validation. RESULTS: A total of 179 patients in training dataset and 98 patients in external validation dataset were included in this study, and total data size was 3115 elements. The age, weight and BMI of the patients were 63.05 (95%CI 60.42-65.68), 61.31(95%CI 59.62-63.00) and 22.70 (95%CI 22.21-23.19), respectively. And 26.0% (72) of the patients were female. The models indicated that the optimal energy targets in the three phases were 900kcal/d, 2300kcal/d, and 2000kcal/d, respectively. Excessive energy intake increased mortality rapidly in the early period of the acute phase. Insufficient energy in the late period of the acute phase significantly raised the mortality as well. For the rehabilitation phase, too much or too little energy delivery were both associated with elevated death risk. CONCLUSIONS: Our study established time-series prediction models for septic patients to optimize energy delivery in the ICU. We recommended permissive underfeeding only in the early acute phase. Later, increased energy intake may improve survival and settle energy debts caused by underfeeding.


Subject(s)
Deep Learning , Energy Intake , Sepsis , Humans , Female , Male , Middle Aged , Aged , Intensive Care Units
17.
BMC Plant Biol ; 24(1): 629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961339

ABSTRACT

Twisted trunks are not uncommon in trees, but their effects on tree growth are still unclear. Among coniferous tree species, the phenomenon of trunk distortion is more prominent in Pinus yunnanensis. To expand the germplasm of genetic resources, we selected families with excellent phenotypic traits to provide material for advanced generation breeding. The progeny test containing 93 superior families (3240 trees) was used as the research material. Phenotypic measurements and estimated genetic parameters (family heritability, realistic gain and genetic gain) were performed at 9, 15, and 18 years of age, respectively. The genetic evaluation yielded the following results (1) The intra-family variance component of plant height (PH) was greater than that of the inter-family, while the inter-family variance components of other traits (diameter at breast height (DBH), crown diameter (CD), height under branches (HUB), degree of stem-straightness (DS)) were greater than that of the intra-family, indicating that there was abundant variation among families and potential for selection. (2) At half rotation period (18 years old), there was a significant correlation among the traits. The proportion of trees with twisted trunks (level 1-3 straightness) reached 48%. The DS significantly affected growth traits, among which PH and DBH were the most affected. The volume loss rate caused by twisted trunk was 18.06-56.75%, implying that trunk distortion could not be completely eliminated after an artificial selection. (3) The influence of tree shape, crown width, and trunk on volume increased, and the early-late correlation between PH, DBH and volume was extremely significant. The range of phenotypic coefficient of variation, genetic variation coefficient and family heritability of growth traits (PH, DBH, and volume) were 44.29-127.13%, 22.88-60.87%, and 0.79-0.83, respectively. (4) A total of 21 superior families were selected by the method of membership function combined with independent selection. Compared with the mid-term selection (18 years old), the accuracy of early selection (9 years old) reached 77.5%. The selected families' genetic gain and realistic gain range were 5.79-19.82% and 7.12-24.27%, respectively. This study can provide some useful reference for the breeding of coniferous species.


Subject(s)
Phenotype , Pinus , Pinus/genetics , Pinus/growth & development , Pinus/physiology , Trees/growth & development , Trees/genetics , Plant Stems/growth & development , Plant Stems/genetics , Plant Stems/anatomy & histology , Plant Breeding
18.
BMC Womens Health ; 24(1): 386, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961373

ABSTRACT

BACKGROUND: Endometriosis is considered as a systemic disease with the presence of proinflammatory cytokines in the circulation, which drives hypercoagulable state of endometriosis. Currently, endometriosis is classified into four stages: I (minimal), II (mild), III (moderate) and IV (severe). The aim of this study is to investigate the correlations between inflammatory markers and coagulation factors in patients diagnosed of endometriosis with stage IV. METHODS: This retrospective case-control study included 171 endometriosis patients with stage IV and 184 controls. Continuous data were expressed by mean ± standard deviation. Mann-Whitney U and χ2 tests were used to compare the medians and frequencies among the groups. Spearman analysis was conducted to determine the correlation among the measured parameters. The diagnostic values of the parameters differentiating endometriomas were tested by receiver operating characteristic (ROC) curve. RESULTS: The time of activated partial thromboplastin time (APTT) was decreased and the concentration of fibrinogen (FIB) and neutrophil-to-lymphocyte ratio (NLR) were increased in women of endometriosis with stage IV. The APTT were negatively correlated with NLR while the concentrations of FIB were positively correlated with NLR. The ROC analysis showed that the Area under the curve (AUC) of FIB was 0.766 (95% confidence interval:0.717-0.814) with sensitivity and specificity reaching 86.5 and 60.9%, respectively. The AUC of CA125 and CA199 was 0.638 (95% confidence interval: 0.578-0.697), 0.71 (95% confidence interval: 0.656-0.763) with sensitivity and specificity reaching 40.9 and 91.8%, 80.7 and 56.5% respectively. The combination of these factors showed the highest AUC of 0.895 (0.862-0.927) with sensitivity of 88.9% and specificity of 77.7%. CONCLUSION: In the present study, we found that inflammatory factors showed significant correlation with APTT or FIB in endometriosis with stage IV. Moreover, the coagulation factors combined with CA125 and CA199 were more reliable for identifying the endometriosis with stage IV.


Subject(s)
Endometriosis , Fibrinogen , Neutrophils , Humans , Female , Endometriosis/blood , Endometriosis/complications , Endometriosis/diagnosis , Adult , Retrospective Studies , Case-Control Studies , Fibrinogen/analysis , Partial Thromboplastin Time , Blood Coagulation/physiology , Severity of Illness Index , CA-125 Antigen/blood , ROC Curve , Lymphocytes , Biomarkers/blood
19.
Phys Rev Lett ; 132(24): 243403, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949354

ABSTRACT

A unitary Fermi gas in an isotropic harmonic trap is predicted to show scale and conformal symmetry that have important consequences in its thermodynamic and dynamical properties. By experimentally realizing a unitary Fermi gas in an isotropic harmonic trap, we demonstrate its universal expansion dynamics along each direction and at different temperatures. We show that as a consequence of SO(2,1) symmetry, the measured release energy is equal to that of the trapping energy. We further observe the breathing mode with an oscillation frequency twice the trapping frequency and a small damping rate, providing the evidence of SO(2,1) symmetry. In addition, away from resonance when scale invariance is broken, we determine the effective exponent γ that relates the chemical potential and average density along the BEC-BCS crossover, which qualitatively agrees with the mean field predictions. This Letter opens the possibility of studying nonequilibrium dynamics in a conformal invariant system in the future.

20.
NPJ Microgravity ; 10(1): 75, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982119

ABSTRACT

The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.

SELECTION OF CITATIONS
SEARCH DETAIL
...