Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.307
Filter
1.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003078

ABSTRACT

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Subject(s)
Arsenic , Cadmium , Charcoal , Magnesium , Oryza , Soil Pollutants , Soil , Oryza/chemistry , Cadmium/analysis , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Soil/chemistry , Magnesium/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods
2.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003084

ABSTRACT

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Subject(s)
Cadmium , Iron Compounds , Magnesium Compounds , Silicates , Water Pollutants, Chemical , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Iron Compounds/chemistry , Adsorption , Models, Chemical , Water Purification/methods
3.
Nat Commun ; 15(1): 5915, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003277

ABSTRACT

GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 µWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.

4.
Int J Biol Macromol ; 276(Pt 1): 133751, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009269

ABSTRACT

Deep eutectic solvent (DES) is an ideal solvent for extracting lignin in biomass pretreatment process. However, excessive breakage of the ß-O-4 bonds of lignin remained a challenge for DES-pretreated biomass. In this study, a novel pretreatment system of choline chloride-citrate acid DES combined with ethanol for the pretreatment of bamboo was developed. The chemical characteristics of extracted lignin of bamboo before and after pretreatment were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). The results showed that the lignin extracted by ethanol/DES had moderate and uniform molecular weight (Mn: 3081-4314 Da, Mw: 3130-5399 Da), and was structurally intact (maintaining 40.29 % ß-O-4 content), which was about five times higher than DES-extracted lignin, and contained a high number of S units (up to 80 %). Ethanol/DES system resulted in high removal of lignin up to 78.81 % and the highest enzymatic digestibility of glucose (72.68 %) and xylan (92.95 %), respectively. In addition, recovered DES provided similar glucose digestibility yields and delignification performance. The Ethanol/DES pretreatment developed herein provided a viable method for maintaining the structural integrity of lignin and preparing lignin with high ß-O-4 content whilst with a relatively high components recovery.

5.
Chin Med ; 19(1): 98, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010069

ABSTRACT

BACKGROUND: Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood. METHODS: The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model. RESULTS: We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated. CONCLUSIONS: Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.

6.
Nat Immunol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009838

ABSTRACT

Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.

7.
J Org Chem ; 89(14): 10234-10238, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38950133

ABSTRACT

Nickel-catalyzed hydrocyanation of 1,3-butadiene with hydrogen cyanide gas is the predominant method for the synthesis of adiponitrile, which is an important precursor for polymer production. However, the use of fossil-derived alkenes raises environmental concerns, and hydrogen cyanide is highly volatile and extremely toxic. Herein, we report the use of biomass-derived 1,4-butanediol, as well as other primary alcohols, for photochemical synthesis of linear and branched nitriles and dinitriles, including adiponitrile, with 1,4-dicyanobenzene as the CN source. This mild, sustainable method does not require hydrogen cyanide gas or an air- or moisture-sensitive metal catalyst and is applicable for the production of dinitriles as precursors of diamines, which have potential utility for the development of novel polyamides.

9.
BMJ Open ; 14(7): e083460, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969370

ABSTRACT

INTRODUCTION: Postoperative ileus (POI) is a postoperative complication that can cause lingering recovery after colorectal resection and a heavy healthcare system burden. Acupuncture aims to prevent postoperative complications, reduce the duration of POI, help recovery and shorten hospital stays. We hypothesise that preoperative electroacupuncture (EA) can promote POI recovery under the enhanced recovery after surgery protocol after laparoscopic surgery in patients with POI. METHODS AND ANALYSIS: This is a multicentre, randomised, sham-controlled trial. A total of 80 patients will be enrolled and randomly assigned to the EA or sham electroacupuncture (SA) group. The eligible patients will receive EA or SA for one session per day with treatment frequency starting on preoperative day 1 for four consecutive days. The primary outcome is the time to first defecation. The secondary outcomes include the time to first flatus, length of postoperative hospital stay, time to tolerability of semiliquid and solid food, postoperative nausea, vomiting, pain and extent of abdominal distention, time to first ambulation, preoperative anxiety, 30-day readmission rate, the usage of anaesthetics and analgesics during operation, length of postanaesthesia care unit stay. A mechanistic study by single-cell RNA sequencing in which postintervention normal intestinal tissue samples will be collected. The results of this study will provide evidence of the effects of acupuncture on POI and promote good clinical decision to millions of patients globally every year. ETHICS AND DISSEMINATION: This study has been approved by the ethical application of Beijing University of Chinese Medicine (2022BZYLL0401), Beijing Friendship Hospital Affiliated to Capital Medical University(2022-P2-368-02), Cancer Hospital Chinese Academy of Medical Science (23/175-3917), Huanxing Cancer Hospital (2023-002-02). The results will be published in a medical journal. In addition, we plan to present them at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300077633.


Subject(s)
Colorectal Neoplasms , Electroacupuncture , Ileus , Laparoscopy , Postoperative Complications , Humans , Electroacupuncture/methods , Laparoscopy/adverse effects , Ileus/etiology , Ileus/therapy , Colorectal Neoplasms/surgery , Postoperative Complications/therapy , Postoperative Complications/etiology , China , Length of Stay/statistics & numerical data , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Preoperative Care/methods , Female , Adult , Male
10.
J Multidiscip Healthc ; 17: 3109-3119, 2024.
Article in English | MEDLINE | ID: mdl-38978829

ABSTRACT

Purpose: This study aimed to investigate the knowledge, attitudes, and practice (KAP) of radiologists regarding artificial intelligence (AI) in medical imaging in the southeast of China. Methods: This cross-sectional study was conducted among radiologists in the Jiangsu, Zhejiang, and Fujian regions from October to December 2022. A self-administered questionnaire was used to collect demographic data and assess the KAP of participants towards AI in medical imaging. A structural equation model (SEM) was used to analyze the relationships between KAP. Results: The study included 452 valid questionnaires. The mean knowledge score was 9.01±4.87, the attitude score was 48.96±4.90, and 75.22% of participants actively engaged in AI-related practices. Having a master's degree or above (OR=1.877, P=0.024), 5-10 years of radiology experience (OR=3.481, P=0.010), AI diagnosis-related training (OR=2.915, P<0.001), and engaging in AI diagnosis-related research (OR=3.178, P<0.001) were associated with sufficient knowledge. Participants with a junior college degree (OR=2.139, P=0.028), 5-10 years of radiology experience (OR=2.462, P=0.047), and AI diagnosis-related training (OR=2.264, P<0.001) were associated with a positive attitude. Higher knowledge scores (OR=5.240, P<0.001), an associate senior professional title (OR=4.267, P=0.026), 5-10 years of radiology experience (OR=0.344, P=0.044), utilizing AI diagnosis (OR=3.643, P=0.001), and engaging in AI diagnosis-related research (OR=6.382, P<0.001) were associated with proactive practice. The SEM showed that knowledge had a direct effect on attitude (ß=0.481, P<0.001) and practice (ß=0.412, P<0.001), and attitude had a direct effect on practice (ß=0.135, P<0.001). Conclusion: Radiologists in southeastern China hold a favorable outlook on AI-assisted medical imaging, showing solid understanding and enthusiasm for its adoption, despite half lacking relevant training. There is a need for more AI diagnosis-related training, an efficient standardized AI database for medical imaging, and active promotion of AI-assisted imaging in clinical practice. Further research with larger sample sizes and more regions is necessary.

11.
Exp Ther Med ; 28(2): 326, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979023

ABSTRACT

Hyperlipidemia is a strong risk factor for numerous diseases. Resveratrol (Res) is a non-flavonoid polyphenol organic compound with multiple biological functions. However, the specific molecular mechanism and its role in hepatic lipid metabolism remain unclear. Therefore, the aim of the present study was to elucidate the mechanism underlying how Res improves hepatic lipid metabolism by decreasing microRNA-33 (miR-33) levels. First, blood miR-33 expression in participants with hyperlipidemia was detected by reverse transcription-quantitative PCR, and the results revealed significant upregulation of miR-33 expression in hyperlipidemia. Additionally, after transfection of HepG2 cells with miR-33 mimics or inhibitor, western blot analysis indicated downregulation and upregulation, respectively, of the mRNA and protein expression levels of sirtuin 6 (SIRT6). Luciferase reporter analysis provided further evidence for binding of miR-33 with the SIRT6 3'-untranslated region. Furthermore, the levels of peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ-coactivator 1α and carnitine palmitoyl transferase 1 were increased, while the concentration levels of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element-binding protein 1 were decreased when SIRT6 was overexpressed. Notably, Res improved the basic metabolic parameters of mice fed a high-fat diet by regulating the miR-33/SIRT6 signaling pathway. Thus, it was demonstrated that the dysregulation of miR-33 could lead to lipid metabolism disorders, while Res improved lipid metabolism by regulating the expression of miR-33 and its target gene, SIRT6. Thus, Res can be used to prevent or treat hyperlipidemia and associated diseases clinically by suppressing hepatic fatty acid synthesis and increasing fatty acid ß-oxidation.

12.
Biologics ; 18: 181-193, 2024.
Article in English | MEDLINE | ID: mdl-38979130

ABSTRACT

Objective: The purpose of this study was to analyze the mechanism by which STAT5B inhibits ferroptosis in mantle cell lymphoma (MCL) by promoting DCAF13 transcriptional regulation of p53/xCT pathway. Methods: The correlations between STAT5B, DCAF13 and ferroptosis in MCL were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html). The expression levels and pairwise correlations of STAT5B, DCAF13, p53 and xCT in MCL patients were detected, respectively. STAT5B was silenced to confirm their criticality in MCL ferroptosis. the effects of blocking necrosis, apoptosis and ferroptosis on the anti-MCL effects of STAT5B were examined. Cells with STAT5B overexpression and/or DCAF13 silencing were constructed to confirm the involvement of DCAF13 in the STAT5B-regulated p53/xCT pathway. The regulation of p53 ubiquitination was confirmed by DCAF13 overexpression and MG132. The effects of silencing DCAF13 and MG132 on STAT5B overexpression on MCL was clarified by a tumor-bearing nude mouse model. Results: DCAF13 was overexpressed in MCL and positively correlated with STAT5B, negatively correlated with p53, and positively correlated with xCT. Inhibition of ferroptosis alleviated the inhibitory effects of siSTAT5B on MCL, while inhibition of necrosis and apoptosis had few effects. Silencing of DCAF13 led to the blocking of STAT5B regulation of p53/xCT and ferroptosis. The changes in DCAF13 and the addition of MG132 did not have statistically significant effects on p53 mRNA. Elevation of DCAF13 resulted in downregulation of p53 protein levels, and this inhibition was reversed by MG132. In animal models, the promotion of MCL and the inhibition of ferroptosis by STAT5B. Silencing of DCAF13 blocked STAT5B inhibition of p53 and induction of xCT, GPX4, and GSH. Conclusion: STAT5B suppresses ferroptosis by promoting DCAF13 transcription to regulate p53/xCT pathway to promote MCL progression.

13.
Front Immunol ; 15: 1397475, 2024.
Article in English | MEDLINE | ID: mdl-38979407

ABSTRACT

Monocytes are pivotal immune cells in eliciting specific immune responses and can exert a significant impact on the progression, prognosis, and immunotherapy of intracranial aneurysms (IAs). The objective of this study was to identify monocyte/macrophage (Mo/MΦ)-associated gene signatures to elucidate their correlation with the pathogenesis and immune microenvironment of IAs, thereby offering potential avenues for targeted therapy against IAs. Single-cell RNA-sequencing (scRNA-seq) data of IAs were acquired from the Gene Expression Synthesis (GEO) database. The significant infiltration of monocyte subsets in the parietal tissue of IAs was identified using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis (hdWGCNA). The integration of six machine learning algorithms identified four crucial genes linked to these Mo/MΦ. Subsequently, we developed a multilayer perceptron (MLP) neural model for the diagnosis of IAs (independent external test AUC=1.0, sensitivity =100%, specificity =100%). Furthermore, we employed the CIBERSORT method and MCP counter to establish the correlation between monocyte characteristics and immune cell infiltration as well as patient heterogeneity. Our findings offer valuable insights into the molecular characterization of monocyte infiltration in IAs, which plays a pivotal role in shaping the immune microenvironment of IAs. Recognizing this characterization is crucial for comprehending the limitations associated with targeted therapies for IAs. Ultimately, the results were verified by real-time fluorescence quantitative PCR and Immunohistochemistry.


Subject(s)
Intracranial Aneurysm , Machine Learning , Macrophages , Monocytes , Single-Cell Analysis , Humans , Intracranial Aneurysm/genetics , Intracranial Aneurysm/immunology , Single-Cell Analysis/methods , Monocytes/immunology , Monocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Gene Expression Profiling , Transcriptome , Cellular Microenvironment/immunology , Cellular Microenvironment/genetics , Male , Female , Gene Regulatory Networks , Computational Biology/methods
14.
J Hazard Mater ; 476: 135121, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981233

ABSTRACT

Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.

15.
J Biol Chem ; : 107534, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981533

ABSTRACT

Seipin, a crucial protein for cellular lipid droplet (LD) assembly, oligomerizes at the interface between the endoplasmic reticulum (ER) and LDs to facilitate neutral lipid packaging. Using proximity labeling, we identify four proteins-Ldo45, Ldo16, Tgl4, and Pln1-that are recruited to the vicinity of yeast seipin, the Sei1-Ldb16 complex, exclusively when seipin function is intact, hence termed seipin accessory factors. Localization studies identify Tgl4 at the ER-LD contact site, in contrast to Ldo45, Ldo16 and Pln1 at the LD surface. Cells with compromised seipin function resulted in uneven distribution of these proteins with aberrant LDs, supporting a central role of seipin in orchestrating their association with the LD. Overexpression of any seipin accessory factor causes LD aggregation and affects a subset of LD protein distribution, highlighting the importance of their stoichiometry. Although single factor mutations show minor LD morphology changes, combined mutations have additive effects. Lastly, we present evidence that seipin accessory factors assemble and interact with seipin in the absence of neutral lipids and undergo dynamically rearrangements during LD formation induction, with Ldo45 acting as a central hub recruiting other factors to interact with the seipin complex.

16.
Nat Food ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982281

ABSTRACT

China's imports of livestock feed, particularly protein-rich feeds, pose challenges to global environmental sustainability. Achieving protein self-sufficiency for food and feed in China without exceeding environmental boundaries requires integrated measures and optimization of China's food system. Here we propose holistic food system innovation strategies consisting of three components-technological innovation, integrated spatial planning and demand-side options-to reduce protein import dependency and promote global environmental sustainability. We find that food system innovations can close almost 80% of China's future protein gaps while reducing 57-85% of agricultural import-embodied environmental impacts. Deploying these innovations would also reduce greenhouse gas emissions (22-27%) and people's harmful exposure to ammonia (73-81%) compared with the baseline scenario in 2050. Technological innovations play a key role in closing protein gaps, while integrated crop-livestock spatial planning is imperative for achieving environmental and health targets.

17.
Bioorg Chem ; 151: 107632, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39003943

ABSTRACT

Oridonin is an antitumor ent-kaurane diterpenoid that medicinal chemists have been paying close attention to in recent years. Herein, a novel 6,20-epoxy A-ring modified oridonin derivative 2 was obtained by a 6-step synthesis. A series of 14-O derivatives of 2 (EpskA1-EpskA24) were synthesized to further enhance the activity. Based on their cytotoxicity against MCF-7, A549 and L-02 cells, EpskA9, EpskA10 and EpskA21 were chosen for further screening to obtain a wider antitumor spectrum. Collectively, EpskA21 showed the most potent antiproliferative activity, inhibiting proliferation and migration, and inducing apoptosis and cell cycle arrest in MCF-7 and MIA-PaCa-2 cells. With the help of network pharmacology analysis, apoptosis-related proteins were selected and further tested by western blot assay. The inhibition of PI3K/AKT and an increase in the levels of Bax/Bcl-2 ratio, Cyt-C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP was observed, indicating that EpskA21 induced apoptosis through the mitochondrial pathway. Given that an increase in DR5 expression and activated Caspase-8 were also observed, the extrinsic apoptosis pathway might also be related to the antitumor effect.

18.
bioRxiv ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38979323

ABSTRACT

The pericellular matrix (PCM) is the immediate microniche surrounding resident cells in various tissue types, regulating matrix turnover, cell-matrix cross-talk and disease initiation. This study elucidated the structure-mechanical properties and mechanobiological functions of the PCM in fibrocartilage, a family of connective tissues that sustain complex tensile and compressive loads in vivo. Studying the murine meniscus as the model tissue, we showed that fibrocartilage PCM contains thinner, random collagen fibrillar networks that entrap proteoglycans, a structure distinct from the densely packed, highly aligned collagen fibers in the bulk extracellular matrix (ECM). In comparison to the ECM, the PCM has a lower modulus and greater isotropy, but similar relative viscoelastic properties. In Col5a1 +/- menisci, the reduction of collagen V, a minor collagen localized in the PCM, resulted in aberrant fibril thickening with increased heterogeneity. Consequently, the PCM exhibited a reduced modulus, loss of isotropy and faster viscoelastic relaxation. This disrupted PCM contributes to perturbed mechanotransduction of resident meniscal cells, as illustrated by reduced intracellular calcium signaling, as well as upregulated biosynthesis of lysyl oxidase and tenascin C. When cultured in vitro, Col5a1 +/- meniscal cells synthesized a weakened nascent PCM, which had inferior properties towards protecting resident cells against applied tensile stretch. These findings underscore the PCM as a distinctive microstructure that governs fibrocartilage mechanobiology, and highlight the pivotal role of collagen V in PCM function. Targeting the PCM or its molecular constituents holds promise for enhancing not only meniscus regeneration and osteoarthritis intervention, but also addressing diseases across various fibrocartilaginous tissues.

19.
Int Immunopharmacol ; 138: 112595, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950455

ABSTRACT

Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.

20.
Curr Med Chem ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38952160

ABSTRACT

OBJECTIVE: Cyclin-dependent kinase 1 (CDK1) regulates the cell cycle and is highly expressed in most tumors. CDK1 expression has been associated with poor disease prognosis. This study aimed to identify the prognostic value of CDK1 in pan-cancer and investigate the association between CDK1 expression and immune cell infiltration. METHODS: CDK1 expression and its correlation with prognosis in pan-cancer were analyzed using online databases. Immune infiltration was assessed by ESTIMATE and CIBERSORT algorithms. We then evaluated the relationship between CDK1 expression and tumor mutational burden (TMB), microsatellite instability (MSI), or tumor-infiltrating immune cells. In addition, we performed the co-expression analysis of immune-related genes and GO analysis with CDK1 expression in pan-cancer. Finally, we compared the CDK1 expression profile with the immune-related genes in 30 pairs of clinical gastrointestinal tumor samples. RESULTS: Our analysis demonstrated overexpression of CDK1 in most tumor tissues, especially in gastrointestinal tumors. The high expression of CDK1 was associated with poor overall survival, disease-specific survival, disease-free interval, and progression-free interval in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), and sarcoma (SARC). Besides, CDK1 expression was significantly associated with TMB in 22 cancer types and MSI in 8 cancer types as well as greater frequencies of MSI-high (MSI-H) status and high tumor mutational burden (TMB-H) in uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), sarcoma (SARC), rectum adenocarcinoma (READ), mesothelioma (MESO), head and neck squamous cell carcinoma (HNSC), and colon adenocarcinoma (COAD). In addition, CDK1 expression correlated with immune cell infiltrating levels, such as M0, M1, or M2 macrophages, memory CD4 T cells, T follicular helper cells, and naive B cells. Our data showed that CDK1 was remarkably correlated with 47 immune-related and immune checkpoint genes in many cancer types. Furthermore, CDK1 was up-regulated in gastrointestinal tumor samples, especially in gastric cancer and intestinal cancer. CDK1 was positively correlated with IDO1 in gastric cancer and PD-1 in intestinal cancer. CONCLUSION: Taken together, our data demonstrated the roles of CDK1 in oncogenesis and metastasis in pan-cancer. Thus, CDK1 is a potential prognostic biomarker and a target for tumor immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...