Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.995
Filter
1.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003066

ABSTRACT

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Subject(s)
Arsenic , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Arsenic/analysis , China , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , Models, Chemical , Models, Theoretical
2.
Pharmgenomics Pers Med ; 17: 319-336, 2024.
Article in English | MEDLINE | ID: mdl-38952778

ABSTRACT

Background: Lung cancer is the leading cause of cancer deaths worldwide, primarily due to lung adenocarcinoma (LUAD). However, the heterogeneity of programmed cell death results in varied prognostic and predictive outcomes. This study aimed to develop an LUAD evaluation marker based on cuproptosis-related lncRNAs. Methods: First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate, LASSO, and multivariate Cox regression analyses were conducted to construct cuproptosis-associated lncRNA models. LUAD patients were categorized into high-risk and low-risk groups using prognostic risk values. Kaplan-Meier analysis, PCA, GSEA, and nomograms were employed to evaluate and validate the results. Results: 7 cuproptosis-related lncRNAs were identified, and a risk model was created. High-risk tumors exhibited cuproptosis-related gene alterations in 95.54% of cases, while low-risk tumors showed alterations in 85.65% of cases, mainly involving TP53. The risk value outperformed other clinical variables and tumor mutation burden as a predictor of 1-, 3-, and 5-year overall survival. The cuproptosis-related lncRNA-based risk model demonstrated high validity for LUAD evaluation, potentially influencing individualized treatment approaches. Expression analysis of four candidate cuproptosis-related lncRNAs (AL606834.1, AL161431.1, AC007613.1, and LINC02835) in LUAD tissues and adjacent normal tissues revealed significantly higher expression levels of AL606834.1 and AL161431.1 in LUAD tissues, positively correlating with tumor stage, lymph node metastasis, and histopathological grade. Conversely, AC007613.1 and LINC02835 exhibited lower expression levels, negatively correlating with these factors. High expression of AL606834.1 and AL161431.1 indicated poor prognosis, while low expression of AC007613.1 and LINC02835 was associated with unfavorable outcomes. Univariate and multivariate analyses confirmed these lncRNAs as independent risk factors for LUAD prognosis. Conclusion: The 4 cuproptosis-related (lncRNAsAL606834.1, AL161431.1, AC007613.1, and LINC02835) can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.

3.
Front Neurosci ; 18: 1360459, 2024.
Article in English | MEDLINE | ID: mdl-38966761

ABSTRACT

Objective: SWI image signal is related to venous reflux disorder and perfusion defect. Computed tomography perfusion (CTP) contains perfusion information in space and time. There is a complementary basis between them to affect the prognosis of cerebral infarction. Methods: Sixty-six patients included in the retrospective study were designated as the training set. Effective perfusion indicator features and imaging radiomic features of the peri-infarction area on Susceptibility weighted imaging (SWI) and CTP modality images were extracted from each case. Thirty-three patients from the prospectively included group were designated as the test set of the machine learning model based on a sparse representation method. The predicted results were compared with the DWI results of the patients' 7-10 days review to assess the validity and accuracy of the prediction. Results: The AUC of the SWI + CTP integrated model was 0.952, the ACC was 0.909, the SEN was 0.889, and the SPE was 0.933. The prediction performance is the highest. Compared with the value of AUC: the SWI model is 0.874, inferior to the performance of the SWI + CTP model, and the CTP model is 0.715. Conclusion: The prediction efficiency of the changing trend of infarction volume is further improved by the correlation between the combination of the two image features.

4.
Phytochemistry ; 226: 114206, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972440

ABSTRACT

Eighteen compounds including eleven previously undescribed diterpenes were isolated from the leaves of Croton mangelong. The structures were determined by HRESIMS, IR, NMR, X-ray diffraction and ECD spectroscopic analysis. All isolates were assayed for their anti-hyperglycemic activities in insulin resistance (IR) 3T3-L1 adipocytes, and compound 4 was tested for its anti-diabetic activity in vivo. Results suggested compound 4 could effectively reduce blood glucose level in diabetic SD rats in a dose of 30 mg/kg.

5.
J Hepatocell Carcinoma ; 11: 1357-1373, 2024.
Article in English | MEDLINE | ID: mdl-39011124

ABSTRACT

Background: CD276 is an emerging immune checkpoint molecule that has been implicated in various cancers. However, its specific role in hepatocellular carcinoma (HCC) remains unclear. This study examined the impact of CD276 on patient prognosis and the tumor microenvironment (TME). Methods: The Cancer Genome Atlas (TCGA) database was utilized to evaluate CD276 expression in HCC and the association between CD276 and immune indicators was also analyzed. The signaling pathways correlated with CD276 expression were identified by gene set enrichment analysis (GSEA). Different algorithms were used to assess immune cell infiltration. The effect of CD276 knockdown on HCC cell phenotypes and its relationship with macrophage polarization was examined using the cell counting kit 8 (CCK-8) assay and co-culture system. Results: CD276 was upregulated in HCC and associated with unfavorable clinical outcomes. Hgh CD276 expression was associated with enrichment of the G2/M checkpoint, E2F targets, and mitotic spindles. CD276 expression was correlated with the infiltration of immune cells, including high level of tumor-associated macrophages and low levels of CD8+ T cells. Knockdown of CD276 decreased HCC cell proliferation and increased apoptosis. CD276 silencing in HCC cells and co-culture with THP-1-derived macrophages had a regulatory effect on macrophage polarization and macrophage-mediated cell proliferation and migration. Conclusion: CD276 expression in HCC is associated with unfavorable clinical outcomes and may contribute to the development of an immunosuppressive microenvironment. Specifically, CD276 was associated with alterations in immune cell infiltration, immune marker expression, and macrophage polarization during HCC progression, suggesting its potential as a prognostic indicator and promising target for immunotherapeutic intervention in HCC.

6.
Heliyon ; 10(12): e33076, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948034

ABSTRACT

Oresitrophe is monotypic, with the only species, Oresitrophe rupifraga Bunge, which is exclusive to China, having special growth and developmental traits due to its habitat. Furthermore, it has bright flowers and medicinal benefits. This study investigated the metabolites present in various tissues of Oresitrophe rupifraga Bunge. Using a widely targeted metabolomics approach, 1965 different metabolites were identified in Oresitrophe rupifraga Bunge. Based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), the aboveground and underground metabolites of Oresitrophe rupifraga differed significantly. The comparison between bulblets and leaves revealed the differential expression of 461 metabolites, whereas the comparison between rhizomes and leaves showed the differential expression of 423 metabolites, and the comparison between bulblets and rhizomes showed the differential expression of 249 metabolites. The bulblets exhibited 49 metabolites that were higher and 412 metabolites that were lower than those of the leaves, whereas the rhizomes showed 123 upregulated and 300 downregulated metabolites. Bulblets showed an increase in 18 metabolites and a decrease in 231 metabolites compared to the rhizomes. Leaves contain more phenolic acids than the rhizomes and bulblets, whereas the rhizomes and bulblets contain more terpenoids than the leaves. KEGG pathway analysis showed an association between metabolites and metabolic pathways, as well as their effect on the progression and maturation of Oresitrophe rupifraga Bunge. The research findings can provide some insight into the growth and developmental traits of Oresitrophe rupifraga Bunge, thus providing a theoretical foundation for cultivating and utilising this plant.

7.
ACS Nano ; 18(26): 16867-16877, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952328

ABSTRACT

Suppressing Sn2+ oxidation and rationally controlling the crystallization process of tin-lead perovskite (Sn-Pb PVK) films by suitable bonding methods have emerged as key approaches to achieving efficient and stable Sn-Pb perovskite solar cells (PSCs). Herein, the chelating coordination is performed at the top and bottom interfaces of Sn-Pb PVK films. The chelation strength is stronger toward Sn2+ than Pb2+ by introducing oligomeric proanthocyanidins (OPC) at the bottom interface. This difference in chelation strength resulted in a spontaneous gradient distribution of Sn/Pb within the perovskite layer during crystallization, particularly enhancing the enrichment of Sn2+ at the bottom interface and facilitating the extraction and separation of photogenerated charge carriers in PSCs. Simultaneously, this top-down distribution of gradually increasing Sn content slowed down the crystallization rate of Sn-Pb PVK films, forming higher-quality films. On the top interface of the PVK, trifluoroacetamidine (TFA) was used to inhibit the generation of iodine vacancies (VI) through chelating with surface-uncoordinated Pb2+/Sn2+, further passivating defects while suppressing the oxidation of Sn2+. Ultimately, the PSCs with simultaneous chelation at both top and bottom interfaces achieved a power conversion efficiency (PCE) of 23.31% and an open-circuit voltage (VOC) exceeding 0.90 V. The stability of unencapsulated target devices in different environments also improved.

8.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948935

ABSTRACT

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Subject(s)
Dendrimers , Glycoproteins , Phosphoproteins , Polyethyleneimine , Polymethacrylic Acids , Titanium , Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyethyleneimine/chemistry , Dendrimers/chemistry , Humans , Titanium/chemistry , Polymethacrylic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Surface Properties , Animals , Particle Size , Adsorption , Cattle
9.
J Chem Inf Model ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949724

ABSTRACT

Ameliorating microglia-mediated neuroinflammation is a crucial strategy in developing new drugs for neurodegenerative diseases. Plant compounds are an important screening target for the discovery of drugs for the treatment of neurodegenerative diseases. However, due to the spatial complexity of phytochemicals, it becomes particularly important to evaluate the effectiveness of compounds while avoiding the mixing of cytotoxic substances in the early stages of compound screening. Traditional high-throughput screening methods suffer from high cost and low efficiency. A computational model based on machine learning provides a novel avenue for cytotoxicity determination. In this study, a microglia cytotoxicity classifier was developed using a machine learning approach. First, we proposed a data splitting strategy based on the molecule murcko generic scaffold, under this condition, three machine learning approaches were coupled with three kinds of molecular representation methods to construct microglia cytotoxicity classifier, which were then compared and assessed by the predictive accuracy, balanced accuracy, F1-score, and Matthews Correlation Coefficient. Then, the recursive feature elimination integrated with support vector machine (RFE-SVC) dimension reduction method was introduced to molecular fingerprints with high dimensions to further improve the model performance. Among all the microglial cytotoxicity classifiers, the SVM coupled with ECFP4 fingerprint after feature selection (ECFP4-RFE-SVM) obtained the most accurate classification for the test set (ACC of 0.99, BA of 0.99, F1-score of 0.99, MCC of 0.97). Finally, the Shapley additive explanations (SHAP) method was used in interpreting the microglia cytotoxicity classifier and key substructure smart identified as structural alerts. Experimental results show that ECFP4-RFE-SVM have reliable classification capability for microglia cytotoxicity, and SHAP can not only provide a rational explanation for microglia cytotoxicity predictions, but also offer a guideline for subsequent molecular cytotoxicity modifications.

10.
Elife ; 132024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959062

ABSTRACT

Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.


Subject(s)
DNA, Single-Stranded , Escherichia coli , Exodeoxyribonucleases , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
11.
Front Cardiovasc Med ; 11: 1397701, 2024.
Article in English | MEDLINE | ID: mdl-38962087

ABSTRACT

Objective: Leukocyte parameters are associated with cardiovascular diseases. The aim of the present study was to investigate the role of leukocyte parameters in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) with high thrombus burden (HTB). Methods: A total of 102 consecutive STEMI patients with HTB who underwent PPCI within 12 h from the onset of symptoms between June 2020 and September 2021 were enrolled in this study. In addition, 101 age- and sex-matched STEMI patients with low thrombus burden (LTB) who underwent PPCI within 12 h from the onset of symptoms were enrolled as controls. Leukocyte parameters, such as neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and monocyte to lymphocyte ratio (MLR), were calculated at the time of admission. Results: The value of NLR and MLR were significantly higher in the HTB group than in the LTB group (6.24 ± 4.87 vs. 4.65 ± 3.47, p = 0.008; 0.40 ± 0.27 vs. 0.33 ± 0.20, p = 0.038). A cutoff value of >5.38 for NLR had a sensitivity and specificity of 53.9% and 74.3%, respectively, and MLR >0.29 had a sensitivity and specificity of 60.8% and 55.4%, respectively, for determining the STEMI patients with HTB [area under the receiver operating characteristic curve (AUC): 0.603, 95% confidence interval (CI): 0.524-0.681, p = 0.012; AUC: 0.578, 95% CI: 0.499-0.656, p = 0.046]. There was no significant difference of all-cause mortality rate and major adverse cardiac events (MACEs) between the STEMI patients with HTB or with LTB (3.92% in HTB group vs. 2.97% in LTB group, p = 0.712; 10.78% in HTB group vs. 8.91% in LTB group, p = 0.215). Compared with the HTB patients in the low NLR group, C-reactive protein, baseline troponin I, baseline brain natriuretic peptide, and leukocyte parameters, such as white blood cell, neutrophil, lymphocyte, NLR, PLR, and MLR, were also significantly higher in the high NLR group in STEMI patients who underwent PPCI with HTB (18.94 ± 19.06 vs. 35.23 ± 52.83, p = 0.037; 10.99 ± 18.07 vs. 21.37 ± 19.64, p = 0.007; 199.39 ± 323.67 vs. 430.72 ± 683.59, p = 0.028; 11.55 ± 3.56 vs. 9.31 ± 2.54, p = 0.001; 9.77 ± 3.17 vs. 5.79 ± 1.97, p = 0.000; 1.16 ± 0.44 vs. 2.69 ± 1.23, p = 0.000; 9.37 ± 4.60 vs 1.31 ± 2.58, p = 0.000; 200.88 ± 89.90 vs. 97.47 ± 50.99, p = 0.000; 0.52 ± 0.29 vs. 0.26 ± 0.14, p = 0.000, respectively). MACEs and heart failure in the high NLR group were significantly higher than that in the low NLR group of STEMI patients who underwent PPCI with HTB (20.45% vs. 4.25%, p = 0.041; 10.91% vs. 2.13%, p = 0.038). Conclusion: The value of NLR and MLR were higher in STEMI patients who underwent PPCI with HTB. In STEMI patients who underwent PPCI with HTB, a raised NLR could effectively predict the occurrence of MACEs and heart failure.

12.
Mediators Inflamm ; 2024: 3282679, 2024.
Article in English | MEDLINE | ID: mdl-38962170

ABSTRACT

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.


Subject(s)
Interleukins , Macrophages , Mice, Inbred BALB C , Animals , Mice , Interleukins/metabolism , Macrophages/metabolism , RAW 264.7 Cells , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate , Disease Models, Animal , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Male , Up-Regulation , Saccharomycetales
13.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951640

ABSTRACT

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Subject(s)
Cell Membrane , Integrin beta3 , Mice, Knockout , Regeneration , Animals , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Cell Membrane/metabolism , Myocytes, Cardiac/metabolism , Male , Plasmalogens/metabolism , Signal Transduction , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Heart Injuries/metabolism , Heart Injuries/pathology , Heart Injuries/genetics , Cell Proliferation , Membrane Proteins/metabolism , Membrane Proteins/genetics
14.
Sci Rep ; 14(1): 15198, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956154

ABSTRACT

Early prognostic assessment of patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is important for guiding clinical management and reducing mortality. The aim of this study was to dynamically monitor the clinical characteristics of HBV-ACLF patients, thereby allowing the construction of a novel prognostic scoring model to predict the outcome of HBV-ACLF patients. Clinical data was prospectively collected for 518 patients with HBV-ACLF and randomly divided into training and validation sets. We constructed day-1, day-2, and day-(1 + 3) prognostic score models based on dynamic time points. The prognostic risk score constructed for day-3 was found to have the best predictive ability. The factors included in this scoring system, referred to as DSM-ACLF-D3, were age, hepatic encephalopathy, alkaline phosphatase, total bilirubin, triglycerides, very low-density lipoprotein, blood glucose, neutrophil count, fibrin, and INR. ROC analysis revealed the area under the curve predicted by DSM-ACLF-D3 for 28-day and 90-day mortality (0.901 and 0.889, respectively) was significantly better than those of five other scoring systems: COSSH-ACLF IIs (0.882 and 0.836), COSSH-ACLFs (0.863 and 0.832), CLIF-C ACLF (0.838 and 0.766), MELD (0.782 and 0.762) and MELD-Na (0.756 and 0.731). Dynamic monitoring of the changes in clinical factors can therefore significantly improve the accuracy of scoring models. Evaluation of the probability density function and risk stratification by DSM-ACLF-D3 also resulted in the best predictive values for mortality. The novel DSM-ACLF-D3 prognostic scoring model based on dynamic data can improve early warning, prediction and clinical management of HBV-ACLF patients.


Subject(s)
Acute-On-Chronic Liver Failure , Humans , Male , Female , Prognosis , Acute-On-Chronic Liver Failure/mortality , Acute-On-Chronic Liver Failure/diagnosis , Middle Aged , Adult , Hepatitis B virus , ROC Curve , Hepatitis B/complications , Prospective Studies , Aged
15.
Clin Transl Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965192

ABSTRACT

BACKGROUND: To develop and validate a serum protein nomogram for colorectal cancer (CRC) screening. METHODS: The serum protein characteristics were extracted from an independent sample containing 30 colorectal cancer and 12 polyp tissues along with their paired samples, and different serum protein expression profiles were validated using RNA microarrays. The prediction model was developed in a training cohort that included 1345 patients clinicopathologically confirmed CRC and 518 normal participants, and data were gathered from November 2011 to January 2017. The lasso logistic regression model was employed for features selection and serum nomogram building. An internal validation cohort containing 576 CRC patients and 222 normal participants was assessed. RESULTS: Serum signatures containing 27 secreted proteins were significantly differentially expressed in polyps and CRC compared to paired normal tissue, and REG family proteins were selected as potential predictors. The C-index of the nomogram1 (based on Lasso logistic regression model) which contains REG1A, REG3A, CEA and age was 0.913 (95% CI, 0.899 to 0.928) and was well calibrated. Addition of CA199 to the nomogram failed to show incremental prognostic value, as shown in nomogram2 (based on logistic regression model). Application of the nomogram1 in the independent validation cohort had similar discrimination (C-index, 0.912 [95% CI, 0.890 to 0.934]) and good calibration. The decision curve (DCA) and clinical impact curve (ICI) analysis demonstrated that nomogram1 was clinically useful. CONCLUSIONS: This study presents a serum nomogram that included REG1A, REG3A, CEA and age, which can be convenient for screening of colorectal cancer.

16.
iScience ; 27(7): 110008, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989453

ABSTRACT

Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.

17.
Clinics (Sao Paulo) ; 79: 100435, 2024.
Article in English | MEDLINE | ID: mdl-38996724

ABSTRACT

OBJECTIVE: This study mainly explores (2R,6R; 2S,6S)-HNK and its compounds whether there are antidepressant effects. METHODS: Four HNK compounds were obtained from 2-(Chlorophenyl) Cyclopentylmethanone. Forced swimming test, locomotor sensitization test, and conditioned location preference test were used to screen the antidepressant activity of the synthesized target compounds. RESULTS: In the case of 10 mg HNK treatment, compared with saline, the immobile time of mice in the HNK group, I5 group and I6 group at 1 h and 7 days had statistical significance. In the case of 10 mg HNK treatment, compared with saline, the immobile time of compound C and D groups in the glass cylinder area was significantly different. In the locomotor sensitization test, the movement distance of compound C and D groups on day 15 and day 7 mice increased significantly compared with the first day. In the conditioned place preference experiment, compound C and compound D induced conditioned place preference in mice compared with the Veh group. CONCLUSION: The results of the forced swimming test, locomotor sensitization test, and conditioned location preference test showed that compounds C and D may have certain anti-depressant activity. However, HNK exerts a rapid and significant antidepressant effect within 1 week, but the duration is short.


Subject(s)
Antidepressive Agents , Ketamine , Motor Activity , Swimming , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice , Male , Ketamine/pharmacology , Ketamine/analogs & derivatives , Motor Activity/drug effects , Time Factors , Behavior, Animal/drug effects , Depression/drug therapy , Disease Models, Animal , Reproducibility of Results
18.
Sci Rep ; 14(1): 16142, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997316

ABSTRACT

Agriculture water use accounts for 70% of the total water withdrawal worldwide. The evapotranspiration during crop growth is one of the important hydrological processes in the agricultural water cycle. This study proposed the concept of artificial irrigation evapotranspiration of irrigated crops to describe that the evapotranspiration caused by irrigation water use. Irrigated crops rely on two kinds of water sources: precipitation and irrigation water. With the construction of irrigation schemes, the artificial irrigation evapotranspiration plays an increasingly important role in the dualistic water cycle system of irrigated cropland. To reveal the amount of artificial irrigation evapotranspiration of 17 categories of irrigated crops in China, this study proposed a new quantitative model system which was established based on traditional evapotranspiration models and soil water balance models. Based on the new model system, we calculated the annual artificial irrigation evapotranspiration of irrigated crops for the period 2013 to 2017 in China. The results showed that the proportion of artificial irrigation evapotranspiration to the total evapotranspiration of irrigated crops was 41.3%, whose value was 228.1 km3 a-1. The artificial irrigation evapotranspiration in different agricultural water management regions were 90.0 km3 a-1 in the northeast region, 86.0 km3 a-1 in the southeast region, and relatively low 52.2 km3a-1 in the west region. The results of this study can provide methods for water management and policy-making in agricultural irrigated areas, and it can also provide a preliminary understanding of the influence of human activities on the dualistic water cycle in cropland.

19.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998219

ABSTRACT

The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), quasi-static and dynamic mechanical properties, and energy characteristics were investigated. The results showed that an appropriate substitution of Al for Cu can improve GFA and reach a critical casting size up to 10 mm. Additionally, with Al replacement of Cu, the change in the distribution and content of free volume inside the BMGs was the main reason for the quasi-static compression plasticity. In contrast, the BMGs exhibited no plasticity during dynamic compression and high-speed impact, owing to the short loading time and thermal softening effect. In terms of energy characteristics, all alloys have a high combustion enthalpy. And on the surface of the fragments collected from impact, the active elements Zr, Al, and Nb reacted because of the adiabatic temperature rise. Further, x = 4 at.% Zr-based BMG with its superior overall performance could penetrate a 6 mm Q235 plate at a speed of 1038 m/s, combining excellent mechanical properties and energy characteristics. This study contributes to the development of Zr-based BMGs as novel energetic structural materials.

20.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998261

ABSTRACT

This paper proposes a novel welding process for ultrahigh-strength steel. The effects of welding parameters on the welding process and weld formation were studied to obtain the optimal parameter window. It was found that the metal transfer modes of solid wires were primarily determined by electrical parameters, while flux-cored wires consistently exhibited multiple droplets per pulse. The one droplet per pulse possessed better welding stability and weld formation, whereas the short-circuiting transfer or one droplet multiple pulses easily caused abnormal arc ignition that decreased welding stability, which could easily lead to a "sawtooth-shaped" weld formation or weld offset towards one side with more spatters. Thus, the electrical parameters corresponding to one droplet per pulse were identified as the optimal parameter window. Furthermore, the weld zone (WZ) was predominantly composed of AF, and the heat-affected zone (HAZ) primarily consisted of TM and LM. Consequently, the welded joint still exhibited excellent mechanical properties, particularly toughness, despite higher welding heat input. The average tensile strength reached 928 MPa, and the impact absorbed energy at -40 °C for the WZ and HAZ were 54 J and 126 J, respectively. In addition, the application of triple-wire welding for ultrahigh-strength steel (UHSS) demonstrated a significant enhancement in post-weld deposition rate, with increases of 106% and 38% compared to single-wire and twin-wire welding techniques, respectively. This process not only utilized flux-cored wire to enhance the mechanical properties of joints but also achieved high deposition rate welding.

SELECTION OF CITATIONS
SEARCH DETAIL
...