Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
Urol Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969546

ABSTRACT

OBJECTIVE: To explore the feasibility and efficacy of clinical-imaging metrics in the diagnosis of prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in prostate imaging-reporting and data system (PI-RADS) category 3 lesions. METHODS: A retrospective analysis was conducted on lesions diagnosed as PI-RADS 3. They were categorized into benign, non-csPCa and csPCa groups. Apparent diffusion coefficient (ADC), T2-weighted imaging signal intensity (T2WISI), coefficient of variation of ADC and T2WISI, prostate-specific antigen density (PSAD), ADC density (ADCD), prostate-specific antigen lesion volume density (PSAVD) and ADC lesion volume density (ADCVD) were measured and calculated. Univariate and multivariate analyses were used to identify risk factors associated with PCa and csPCa. Receiver operating characteristic curve (ROC) and decision curves were utilized to assess the efficacy and net benefit of independent risk factors. RESULTS: Among 202 patients, 133 had benign prostate disease, 25 non-csPCa and 44 csPCa. Age, PSA and lesion location showed no significant differences (P > 0.05) among the groups. T2WISI and coefficient of variation of ADC (ADCcv) were independent risk factors for PCa in PI-RADS 3 lesions, yielding an area under the curve (AUC) of 0.68. ADC was an independent risk factor for csPCa in PI-RADS 3 lesions, yielding an AUC of 0.65. Decision curve analysis showed net benefit for patients at certain probability thresholds. CONCLUSIONS: T2WISI and ADCcv, along with ADC, respectively showed considerable promise in enhancing the diagnosis of PCa and csPCa in PI-RADS 3 lesions.

2.
Aging (Albany NY) ; 16(11): 9584-9598, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38836754

ABSTRACT

BACKGROUND: Prostate cancer is one of the most common types of cancer in the US, and it has a high mortality rate. Diabetes mellitus is also a dangerous health condition. While some studies have examined the relationship between diabetes mellitus and the risk of prostate cancer, there is still some debate on the matter. This study aims to carefully assess the relationship between prostate cancer and diabetes from both real-world and genetic-level data. METHODS: This meta-analysis was conducted following the PRISMA 2020 reporting guidelines. The study searched three databases including Medline, Embase and Cochrane. The studies about the incidence risk of prostate cancer with diabetes mellitus were included and used to evaluate the association. The odds ratio (OR), risk ratio (RR) and 95% confidence intervals (95% CI) were estimated using Random Effects models and Fixed Effects models. Mendelian randomization study using genetic variants was also conducted. RESULTS: A total of 72 articles were included in this study. The results showed that risk of prostate cancer decreased in diabetes patients. And the influence was different in different regions. This study also estimated the impact of body mass index (BMI) in the diabetes populations and found that the risk decreased in higher BMI populations. The MR analysis found that diabetes mellitus exposure reduced the risk of prostate cancer in the European population and Asia populations. Conclusions The diabetes mellitus has a protective effect on prostate cancer. And the influence of obesity in diabetes mellitus plays an important role in this effect.


Subject(s)
Diabetes Mellitus , Mendelian Randomization Analysis , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/epidemiology , Diabetes Mellitus/genetics , Diabetes Mellitus/epidemiology , Body Mass Index , Risk Factors
3.
Article in English | MEDLINE | ID: mdl-38922439

ABSTRACT

In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan oligosaccharide (COS) and in situ welding of the generated LIGs to engineering plastic substrates are achieved simultaneously. The resulting LIG products display a hierarchical porous architecture, excellent electrical conductivity (6.3 Ω sq-1), and superhydrophilic properties, making them ideal electrode materials for MSCs. The pyrolysis-welding coupled mechanism is deeply discussed through cross-sectional analyses and finite element simulations. The MSCs prepared by COSLL exhibit considerable areal capacitance of over 4 mF cm-2, which is comparable to that of the polyimide-LIG-based counterpart. COSLL is also compatible with complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) processes, enabling the fabrication of LIG/Au MSCs with comparable areal capacitance and lower internal resistance. Furthermore, the as-prepared MSCs demonstrate excellent mechanical robustness, long-cycle capability, and ease of series-parallel integration, benefiting their practical application in various scenarios. With the use of eco-friendly biomass carbon source and convenient process flowchart, the COSLL emerges as an attractive method for the fabrication of flexible LIG on-chip MSCs and various other advanced LIG devices.

4.
Int J Surg ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788195

ABSTRACT

OBJECTIVE: Most bladder cancers are non-muscle invasive bladder cancer (NMIBC), and transurethral resection of bladder tumors (TURBT) is the standard treatment. However, postoperative recurrence remains a significant challenge, and the influence of bladder tumor location on prognosis is still unclear. This study aims to investigate how tumor location affects the prognosis of NMIBC patients undergoing TURBT and to identify the optimal surgical approach. METHODS: A multicenter study was conducted, which included Chinese NMIBC data from 15 hospitals (1996-2019) and data from 17 registries of the Surveillance, Epidemiology, and End Results database (SEER) (2000-2020). Patients initially diagnosed with NMIBC and undergoing TURBT or partial cystectomy were analyzed, with cases lost to follow-up or with missing data excluded. The study investigated the overall survival (OS), disease-specific survival (DSS), and recurrence-free survival (RFS) among patients with different tumor locations. Kaplan-Meier, Cox regression, and propensity score matching methods were employed to explore the association between tumor location and prognosis. Stratified populations were analyzed to minimize bias. RESULTS: This study included 118,477 NMIBC patients and highlighted tumor location as a crucial factor impacting post-TURBT prognosis. Both anterior wall and dome tumors independently predicted adverse outcomes in two cohorts. For anterior wall tumors, the Chinese cohort showed hazard ratios (HR) for OS of 4.35 (P < 0.0001); RFS of 2.21 (P < 0.0001); SEER cohort OS HR of 1.10 (P = 0.0001); DSS HR of 1.13 (P = 0.0183). Dome tumors displayed similar trends (Chinese NMIBC cohort OS HR of 7.91 (P < 0.0001); RFS HR of 2.12 (P < 0.0001); SEER OS HR of 1.05 (P = 0.0087); DSS HR of 1.14 (P = 0.0006)). Partial cystectomy significantly improved the survival of dome tumor patients compared to standard TURBT treatment (P < 0.01). CONCLUSION: This study reveals the significant impact of tumor location in NMIBC patients on the outcomes of TURBT treatment, with tumors in the anterior wall and bladder dome showing poor post-TURBT prognosis. Compared to TURBT treatment, partial cystectomy improves the prognosis for bladder dome tumors. This study provides guidance for personalized treatment and prognosis management for NMIBC patients.

5.
Adv Mater ; : e2400115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752837

ABSTRACT

All-solid-state lithium metal batteries (ASSLMBs) are considered as the most promising candidates for the next-generation high-safety batteries. To achieve high energy density in ASSLMBs, it is essential that the solid-state electrolytes (SSEs) are lightweight, thin, and possess superior electrochemical stability. In this study, a feasible and scalable fabrication approach to construct 3D supporting skeleton using an electro-blown spinning technique is proposed. This skeleton not only enhances the mechanical strength but also hinders the migration of Li-salt anions, improving the lithium-ion transference number of the SSE. This provides a homogeneous distribution of Li-ion flux and local current density, promoting uniform Li deposition. As a result, based on the mechanically robust and thin SSEs, the Li symmetric cells show outstanding Li plating/stripping reversibility. Besides, a stable interface contact between SSE and Li anode has been established with the formation of an F-enriched solid electrolyte interface layer. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell achieves a capacity retention ratio of 94.0% after 350 cycles at 0.5 C. Also, the high-voltage Li|LCO cell shows a capacity retention of 92.4% at 0.5 C after 500 cycles. This fabrication approach for SSEs is applicable for commercially large-scale production and application in high-energy-density and high-safety ASSLMBs.

6.
Front Immunol ; 15: 1395047, 2024.
Article in English | MEDLINE | ID: mdl-38694500

ABSTRACT

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Subject(s)
Cellular Senescence , Drug Resistance, Neoplasm , Prostatic Neoplasms , Humans , Cellular Senescence/drug effects , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Animals
7.
Exp Hematol Oncol ; 13(1): 47, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664743

ABSTRACT

Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.

8.
Adv Mater ; 36(27): e2404140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651740

ABSTRACT

Aqueous zinc-based batteries (ZBs) have been widely investigated owing to their intrinsic safety, low cost, and simple assembly. However, the actual behavior of Zn deposition under large current density is still a severe issue associated with obscure mechanism interpretation of ZBs under high loading. Here, differing from the conventional understanding that short circuit is induced by dendrite penetrating under large current density (10-100 mA cm-2), the separator permeation effect is unraveled to illustrate the paradox between smooth deposition and short lifespan. Generally, a dense plating morphology is achieved under large current density because of intensive nuclei and boosted plane growth. Nevertheless, in the scenes applying separators, the multiplied local current density derived from narrow separator channels leads to rapid Zn2+ exhaustion, converting the Zn deposition mode from nucleation control to concentration control, which eventually results in separator permeation and short circuit. This effect is validated in other aqueous metal anodes (Cu, Sn, Fe) and receives similar results. Based on the understanding, a micro-pore (150 µm) sponge foam is proposed as separators for large-current anodes to provide broader Zn2+ path and mitigate the separator permeation effect. This work provides unique perspectives on coordinating fast-charging ability and anode stability of ZBs.

10.
J Mater Sci Mater Med ; 35(1): 21, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526656

ABSTRACT

The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8+ T cells and NKp46+ NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.


Subject(s)
Nanofibers , Urinary Bladder Neoplasms , Humans , Gemcitabine , Cisplatin , CD8-Positive T-Lymphocytes , Deoxycytidine/therapeutic use , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy
11.
Int J Surg ; 110(5): 2992-3007, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38445538

ABSTRACT

BACKGROUND: Image-guided surgery (IGS) refers to surgery navigated by medical imaging technology, helping doctors better clarify tumor boundaries, identify metastatic lymph nodes and preserve surrounding healthy tissue function. Recent studies have provided expectable momentum of the application of IGS in prostate cancer (PCa). The authors aim to comprehensively construct a bibliometric analysis of the application of IGS in PCa. METHOD: The authors searched publications related to application of IGS in PCa from 2013 to 2023 on the web of science core collection (WoSCC) databases. VOSviewer, CiteSpace, and R package 'bibliometrix' were used for bibliometric analysis. RESULTS: Two thousand three eighty-nine articles from 75 countries and 2883 institutions led by the United States were included. The number of publications related to the application of IGS in PCa kept high in the last decade. Johns Hopkins University is the top research institutions. Journal of Nuclear Medicine has the highest popularity as the selection of journal and co-cited journal. Pomper Martin G. had published the most paper. Ali Afshar-Oromieh was co-cited most frequently. The clinical efficacy of PSMA-PET/CT in PCa diagnosis and treatment are main topics in this research field, with emerging focuses on the use of fluorescence imaging guidance technology in PCa. 'PSMA' and 'PET/CT' are the main keywords as long-term research hotspots. CONCLUSION: This study is the first bibliometric analysis of researches on application of IGS in PCa with three recognized bibliometric software, providing an objective description and comprehensive guidance for the future relevant investigations.


Subject(s)
Bibliometrics , Prostatic Neoplasms , Surgery, Computer-Assisted , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Surgery, Computer-Assisted/methods , Prostatectomy/methods , Prostatectomy/statistics & numerical data
12.
Nat Mater ; 23(5): 604-611, 2024 May.
Article in English | MEDLINE | ID: mdl-38491148

ABSTRACT

The conventional fabrication of bulk van der Waals (vdW) materials requires a temperature above 1,000 °C to sinter from the corresponding particulates. Here we report the near-room-temperature densification (for example, ∼45 °C for 10 min) of two-dimensional nanosheets to form strong bulk materials with a porosity of <0.1%, which are mechanically stronger than the conventionally made ones. The mechanistic study shows that the water-mediated activation of van der Waals interactions accounts for the strong and dense bulk materials. Initially, water adsorbed on two-dimensional nanosheets lubricates and promotes alignment. The subsequent extrusion closes the gaps between the aligned nanosheets and densifies them into strong bulk materials. Water extrusion also generates stresses that increase with moulding temperature, and too high a temperature causes intersheet misalignment; therefore, a near-room-temperature moulding process is favoured. This technique provides an energy-efficient alternative to design a wide range of dense bulk van der Waals materials with tailored compositions and properties.

13.
Nature ; 626(8001): 999-1004, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418915

ABSTRACT

The advantage of 3D printing-that is, additive manufacturing (AM) of structural materials-has been severely compromised by their disappointing fatigue properties1,2. Commonly, poor fatigue properties appear to result from the presence of microvoids induced by current printing process procedures3,4. Accordingly, the question that we pose is whether the elimination of such microvoids can provide a feasible solution for marked enhancement of the fatigue resistance of void-free AM (Net-AM) alloys. Here we successfully rebuild an approximate void-free AM microstructure in Ti-6Al-4V titanium alloy by development of a Net-AM processing technique through an understanding of the asynchronism of phase transformation and grain growth. We identify the fatigue resistance of such AM microstructures and show that they lead to a high fatigue limit of around 1 GPa, exceeding the fatigue resistance of all AM and forged titanium alloys as well as that of other metallic materials. We confirm the high fatigue resistance of Net-AM microstructures and the potential advantages of AM processing in the production of structural components with maximum fatigue strength, which is beneficial for further application of AM technologies in engineering fields.

14.
Asian J Urol ; 11(1): 65-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312820

ABSTRACT

Objective: This study was designed to evaluate the feasibility, efficacy, and safety of percutaneous ureteroscopy laser unroofing as an ambulatory surgery for symptomatic simple renal cysts under multilevel paravertebral nerve block anesthesia. Methods: From December 2015 to September 2017, 33 simple renal cyst patients who had surgical indications were enrolled. Under ultrasound guidance, the T10/T11, T11/T12, and T12/L1 paravertebral spaces were identified, and 7-10 mL 0.5% ropivacaine was injected at each segment. Then a puncture needle was placed inside the cyst cavity under ultrasonic monitoring. A guidewire was introduced followed by sequential dilation up to 28/30 Fr. The extra parenchymal portion of the cyst wall was dissociated and incised using a thulium laser, and a pathological examination was performed. Results: Sensory loss to pinprick from T8 to L1 and sensory loss to ice from T6 to L2 were observed in all patients. None of the patients complained of pain during surgery. No serious complications occurred perioperatively. After the surgery, all patients recovered their lower limb muscle strength quickly, got out of bed, resumed oral feeding, and left the hospital within 24 h of admission. The pathologic diagnosis of all cyst walls was a simple renal cyst. The mean follow-up was 35.8 months. At the end of follow-up, the cyst units were reduced in size by more than 50% compared to the preoperative size, and no patient experienced a recurrence. Conclusion: Multi-level paravertebral nerve block for percutaneous ureteroscopy laser unroofing as an ambulatory surgery mode is feasible, safe, and effective for the treatment of simple renal cysts in selected patients.

15.
Cancer Biol Med ; 20(12)2024 02 05.
Article in English | MEDLINE | ID: mdl-38318809

ABSTRACT

OBJECTIVE: Real-word data on long-acting luteinizing hormone-releasing hormone (LHRH) agonists in Chinese patients with prostate cancer are limited. This study aimed to determine the real-world effectiveness and safety of the LHRH agonist, goserelin, particularly the long-acting 10.8-mg depot formulation, and the follow-up patterns among Chinese prostate cancer patients. METHODS: This was a multicenter, prospective, observational study in hormone treatment-naïve patients with localized or locally advanced prostate cancer who were prescribed goserelin 10.8-mg depot every 12 weeks or 3.6-mg depot every 4 weeks with or without an anti-androgen. The patients had follow-up evaluations for 26 weeks. The primary outcome was the effectiveness of goserelin in reducing serum testosterone and prostate-specific antigen (PSA) levels. The secondary outcomes included testosterone and PSA levels, attainment of chemical castration (serum testosterone <50 ng/dL), and goserelin safety. The exploratory outcome was the monitoring pattern for serum testosterone and PSA. All analyses were descriptive. RESULTS: Between September 2017 and December 2019, a total of 294 eligible patients received ≥ 1 dose of goserelin; 287 patients (97.6%) were treated with goserelin 10.8-mg depot. At week 24 ± 2, the changes from baseline [standard deviation (95% confidence interval)] in serum testosterone (n = 99) and PSA (n = 131) were -401.0 ng/dL [308.4 ng/dL (-462.5, -339.5 ng/dL)] and -35.4 ng/mL [104.4 ng/mL (-53.5, -17.4 ng/mL)], respectively. Of 112 evaluable patients, 100 (90.2%) achieved a serum testosterone level < 50 ng/dL. Treatment-emergent adverse events (TEAEs) and severe TEAEs occurred in 37.1% and 10.2% of patients, respectively. The mean testing frequency (standard deviation) was 1.6 (1.5) for testosterone and 2.2 (1.6) for PSA. CONCLUSIONS: Goserelin 10.8-mg depot effectively achieved and maintained castration and was well-tolerated in Chinese patients with localized and locally advanced prostate cancer.


Subject(s)
Goserelin , Prostatic Neoplasms , Male , Humans , Goserelin/adverse effects , Prostate-Specific Antigen/therapeutic use , Antineoplastic Agents, Hormonal/adverse effects , Prospective Studies , Prostatic Neoplasms/drug therapy , Testosterone/therapeutic use , China
16.
Nat Genet ; 56(3): 442-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361033

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Multiomics , Proteomics , Metabolic Reprogramming , Dicyclohexylcarbodiimide , Disease Progression , Prognosis
17.
Eur Urol Open Sci ; 60: 47-53, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333046

ABSTRACT

Repeat partial nephrectomy (PN) is an effective treatment in improving the prognosis for patients with recurrent renal cancer after initial PN. However, salvage PN (sPN) is inevitably associated with a higher rate of complications, largely because of intraperitoneal adhesions and fibrosis. Here we describe three initial cases for which recurrent renal tumors were treated with a novel minimally invasive approach, namely Ultrasound-guided Renal Artery Balloon catheter Occluded Hybrid Partial Nephrectomy (UBo-HPN).With laparoscopic ultrasound (LUS) guiding a Fogarty catheter to occlude the arterial blood supply, dissection of the renal hilum and most of the abdominal cavity can be avoided. UBo-HPN was successfully performed in three patients. One case of postoperative fever (Clavien-Dindo grade II) occurred, with no other complications. The mean operative time was 106 min, with a mean warm ischemia time of 21 min. UBo-HPN may be considered a safe and effective alternative for sPN, with a minimally invasive surgical footprint and better surgical outcomes.

18.
World J Urol ; 42(1): 62, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285266

ABSTRACT

PURPOSE: To evaluate the cooling effect and other advantages of a novel circulation system for ureteroscopic holmium laser lithotripsy (URSL) in a standardized in vitro model. MATERIALS AND METHODS: The novel circulation system was assembled by connecting a 4Fr ureteral catheter and a filter. Trails were divided into a new URSL group and a conventional URSL group. First, different power settings (18-30 W) of the holmium laser and irrigation flow rates (20-50 mL/min) were used to evaluate the thermal effect on the lithotripsy site of all groups. Then, renal pelvic temperature and pressure were assessed during URSL at a power of 1.5 J/20 Hz and irrigation flow rates of (20-50 mL/min). Finally, the whole process of lithotripsy was performed at 1.5 J/20 Hz (operator duty cycle ODC: 50%) with an irrigation flow rate of 30 mL/min. The time required for lithotripsy, visual field clarity, and stone migration were observed. RESULTS: Temperature of the lithotripsy point was significantly lower in the new URSL group than in the conventional group (P < 0.05) with irrigation rates (20, 30 mL/min). The renal pelvic pressure of the new group was significantly lower than that of the conventional group in which intrarenal hypertension developed at an irrigation rate of 50 ml/min. The new group had better visual clarity and lesser stone upward migration when lithotripsy was performed at 1.5 J/20 Hz and 30 ml/min. CONCLUSION: The novel circulation system is more effective in reducing the thermal effects of URSL, pelvic pressure, stone upward migration, and improving the visual clarity of the operative field.


Subject(s)
Hypertension , Lithotripsy, Laser , Lithotripsy , Humans , Ureteroscopy , Holmium
19.
Cancers (Basel) ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254871

ABSTRACT

BACKGROUND: Sex is an important factor influencing the immune system, and the distribution of tumors, including their types and subtypes, is characterized by sexual dichotomy. The aim of this study was to investigate whether there is an association between sex and the treatment effect of immune checkpoint inhibitors (ICI). METHODS: Four bibliographic databases were searched. Studies of randomized controlled trials (RCTs) assessing the efficacy of ICI were identified and used, and the primary endpoint was the difference in efficacy of ICI between males and females, presented as overall survival (OS), progression-free survival (PFS) and recurrence-free survival (RFS). The study calculated the pooled HRs and 95% CIs for OS, PFS and RFS for males and females using a random effects model or a fixed effects model, and thereby assessed the effect of sex on the efficacy of ICI treatment. This study is registered with PROSPERO (CRD42022370939). RESULTS: A total of 103 articles, including a total of 63,755 patients with cancer, were retrieved from the bibliographic database, of which approximately 70% were males. In studies with OS as the outcome, the combined hazard ratio (HR) was 0.77 (95% CI 0.74-0.79) for male patients treated with ICI and 0.81 (95% CI 0.78-0.85) for female patients compared to controls, respectively. The difference in efficacy between males and females was significant. CONCLUSIONS: ICI therapy, under suitable conditions for its use, has a positive impact on survival in various types of tumors, and male patients benefit more than females. It may be necessary to develop different tumor immunotherapy strategies for patients of different sexes.

20.
Adv Mater ; 36(1): e2303610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37500064

ABSTRACT

The localized reaction heterogeneity of the sulfur cathode and the uneven Li deposition on the Li anode are intractable issues for lithium-sulfur (Li-S) batteries under practical operation. Despite impressive progress in separately optimizing the sulfur cathode or Li anode, a comprehensive understanding of the highly coupled relationship between the cathode and anode is still lacking. In this work, inspired by the Butler-Volmer equation, a binary descriptor (IBD ) assisting the rational structural design of sulfur cathode by simultaneously considering the mass-transport index (Imass ) and the charge-transfer index (Icharge ) is identified, and subsequently the relationship between IBD and the morphological evolution of Li anode is established. Guided by the IBD , a scalable electrode providing interpenetrated flow channels for efficient mass/charge transfer, full utilization of active sulfur, and mechanically elastic support for aggressive electrochemical reactions under practical conditions is reported. These characteristics induce a homogenous distribution of local current densities and reduced reaction heterogeneity on both sides of the cathode and anode. Impressive energy density of 318 Wh kg-1 and 473 Wh L-1 in an Ah-level pouch cell can be achieved by the design concept. This work offers a promising paradigm for unlocking the interaction between cathode and anode and designing high-energy practical Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...