Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
1.
Domest Anim Endocrinol ; 89: 106870, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954983

ABSTRACT

The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.

2.
J Colloid Interface Sci ; 675: 263-274, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38970912

ABSTRACT

The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.

3.
Semin Oncol Nurs ; : 151690, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971689

ABSTRACT

OBJECTIVES: It is not clear how chemotherapy-related cognitive impairment and self-care ability affect the quality of life of women with breast cancer. The purpose of this study was to explore the relationships between chemotherapy-related cognitive impairment, self-care ability, and quality of life in breast cancer patients, and test whether self-care ability plays a mediating role in the association between cognitive impairment and quality of life. METHODS: This study was a cross-sectional study, conducted in China in 2022. Self-reported scales were used to assess cognitive function, self-care ability, and quality of life. Data were analyzed using descriptive statistics, spearman correlation analysis and hierarchical multiple regression analyses, the SPSS Process program was used to explore the mediating effect of self-care ability. RESULTS: A total of 218 participants were investigated, and approximately 79.3% of patients experienced mild chemotherapy-related cognitive impairment, the mean quality of life score was 59.96 ± 14.15, and the mean self-care ability score was 107.4 ± 24.09. Significant correlations among cognitive impairment, self-care ability, and quality of life were observed (P < .05). Additionally, self-care ability played a partial mediating role between cognitive impairment and quality of life (P < .05), accounting for 24.3% and 22.3%, respectively. CONCLUSIONS: Chemotherapy-related cognitive impairment and self-care ability are factors affecting the quality of life of breast cancer survivors. Self-care ability mediates the relationship between cognitive impairment and quality of life. Enhancing patients' self-care ability can improve the quality of life of patients with cognitive impairment. IMPLICATIONS FOR NURSING PRACTICE: In the future, oncology nurses should not only pay attention to the severity of cognitive impairment, but also assess the level of patients' self-care ability, provide relevant medical and healthcare guidance, train self-management behavior and strengthen self-care ability by integrating multidisciplinary forces to improve the quality of life of breast cancer patients effectively.

4.
Int Immunopharmacol ; 136: 112410, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38843641

ABSTRACT

Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nitric Oxide Synthase Type III , Nitric Oxide , Signal Transduction , Wound Healing , Animals , Mesenchymal Stem Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Mice , Nitric Oxide/metabolism , Male , Mice, Inbred C57BL , Neovascularization, Physiologic , Cells, Cultured , Humans , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Cell Differentiation , Membrane Proteins
5.
Int J Pharm ; 661: 124385, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925237

ABSTRACT

Curcumin, a polyphenol extracted from turmeric, is a potential alternative for the treatment of oral squamous cell carcinoma (OSCC) due to its remarkable anticancer activity and low systemic toxicity. To further enhance the anticancer activity and bioavailability of curcumin, we synthesized a curcumin analogue, AC17, by modifying the benzene ring and methylene group of curcumin. A soluble hyaluronic acid microneedle patch (AC17@HAMN) was developed to ensure accurate and safe delivery of AC17 to tumor tissues. The inhibitory effect of AC17 on OSCC cells was stronger than that of curcumin and some common analogues. Transcriptome sequencing showed that the target genes of AC17 were mainly concentrated in apoptosis, cell cycle and cell senescence pathways. Among them, AC17 induces cell cycle arrest and inhibits cell proliferation mainly by activating FOXO3 signaling. With good penetration and dissolution properties, microneedles can deliver AC17 directly to the tumor site and show good anti-tumor effect. Moreover, AC17@HAMN showed good biosafety. In summary, AC17@HAMN offers high efficiency, minimal invasiveness, and few adverse reactions. This microneedle patch holds great promise for potential clinical applications, especially for the treatment of OSCC.

6.
Pediatr Obes ; 19(8): e13145, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38890760

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aimed to examine the associations between breastfeeding duration and metabolic syndrome (MetS) in adolescents and to further investigate the role of birth weight for gestational age (GA) on these associations. METHODS: A total of 10 275 participants aged 7 to 18 years were included applying multistage cluster random sampling from a Chinese national survey. Birth weight was classified into small for GA (SGA), appropriate for GA (AGA) and large for GA (LGA). Information was collected through a self-administered questionnaire, physical examination and blood biochemical examination. Multivariable linear regression, logistic regression models, restricted cubic spline models were applied to assess the relationships of breastfeeding duration and MetS with different birth weight for GA. RESULTS: The prevalence of non-breastfeeding, 0-5, 6-12 and >12 months groups were 16.2%, 23.1%, 42.5% and 18.2%, and the prevalence of SGA and LGA was 11.9% and 12.7%, respectively. Prolonged breastfeeding duration was associated with higher odds of MetS (ß: 0.08, 95% CI: 0.03, 0.13), WC (ß: 3.49, 95% CI: 2.82, 4.16) and SBP (ß: 2.34, 95% CI: 1.80, 2.89). SGA and prolonged breastfeeding synergistically increased MetS risks, but LGA appeared to offset the adverse effects of prolonged breastfeeding. CONCLUSION: Prolonged breastfeeding may increase children's MetS risks. SGA synergies with prolonged breastfeeding increased MetS burden in children and adolescents, while LGA mitigated the risks. This reminds us that intensive attention should be paid to both early birth weight and subsequent living environment for children and adolescents' lifelong health.


Subject(s)
Birth Weight , Breast Feeding , Gestational Age , Metabolic Syndrome , Humans , Breast Feeding/statistics & numerical data , Metabolic Syndrome/epidemiology , Female , Adolescent , Male , Child , China/epidemiology , Prevalence , Time Factors , Infant, Newborn , Risk Factors , Infant, Small for Gestational Age , Cross-Sectional Studies
7.
Huan Jing Ke Xue ; 45(6): 3679-3687, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897787

ABSTRACT

The threat of microplastic pollution in soil ecosystems has caused widespread concern. In order to clarify the effect of polyethylene microplastics on soil properties, a 4-month soil incubation experiment was conducted in this study to investigate the effect of different mass fraction (1 %, 2.5 %, and 5 %) and particle sizes (30 mesh and 100 mesh) of polyethylene microplastics on soil chemical properties, nutrient contents, and enzyme activities. The results showed that:① When the particle size was 100 mesh, microplastics at the mass concentrations of the 2.5 % and 5 % treatments significantly reduced soil pH, and the exposure of polyethylene microplastics had no significant effect on soil conductivity. ② Compared to that in CK, the addition of microplastics reduced soil available potassium, available phosphorus, and nitrate nitrogen to varying degrees. The addition of 100 mesh microplastics significantly increased soil organic matter and ammonium nitrogen. ③ When the particle size was 100 mesh, compared to that in CK, treatments of all concentrations significantly increased soil catalase activity and alkaline phosphatase, showing an increasing but not significant trend, and the 5 % concentration treatment significantly decreased soil sucrase activity. ④ Changes in soil properties were influenced by the addition of microplastics of different concentrations and sizes, with higher concentrations and smaller particle sizes having more significant effects. In conclusion, the effects of microplastics on soil properties were not as pronounced as expected, and future research should focus on the mechanisms involved in the different effects.


Subject(s)
Microplastics , Phosphorus , Polyethylene , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Phosphorus/analysis , Nitrogen , Catalase/metabolism , Nutrients/analysis , Particle Size , Alkaline Phosphatase/metabolism
8.
Phys Chem Chem Phys ; 26(24): 17083-17089, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38842138

ABSTRACT

A SERS substrate with high sensitivity and reusability was proposed. The chip consists of multiple ZnO microcavities loaded with silver particles. Based on structural characteristics, this coupling between cavity modes and localized surface plasmon modes can highly localize the electric field, where experimental results revealed a detection limit of 10-11 M for R6G. In addition, during carrier control in semiconductors with localized electromagnetic fields, our substrate also exhibits high self-cleaning efficiency and in situ detection stability. Even in a dry environment, it exhibits excellent light-mediated cleaning ability across multiple reuse test cycles. The convenient, rinse-free substrate, with its cost-effective and sustainable features, shows great promise for the study on detection and degradation of active materials.

9.
Front Vet Sci ; 11: 1384386, 2024.
Article in English | MEDLINE | ID: mdl-38903689

ABSTRACT

Introduction: Nucleotide-binding domain (NOD)-like receptors (NLRs) are expressed in the endometrium, and involved in modulating the female innate immune responses. There are conceptus-endometrial interactions during pregnancy, which ensure immune homeostasis of the maternal-fetal interface. The purpose of this study was to explore the effects of early pregnancy on NLR expression in the ovine endometrium. Methods: Endometrial tissues were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of pregnancy (n = 6 for each group), and RT-qPCR, western blot and immunohistochemistry analysis were used to analyze the expression of NLRs, including NOD1, NOD2, major histocompatibility complex class II transactivator (CIITA), neuronal apoptosis inhibitor protein (NAIP), NLR family, pyrin domain-containing 1 (NLRP1), NLRP3 and NLRP7. Results: Expression levels of NOD1, NOD2, NAIP, CIITA, NLRP1 and NLRP3 declined, but expression level of NLRP7 increased in the endometria during early pregnancy compared with nonpregnant ewes. In addition, NOD2 and CIITA proteins were located in the endometrium in a protein type-, cell type- and pregnancy status-specific manner. Discussion: Early pregnancy modulated expression of NLR family in the ovine endometrium, which may be essential for conceptus-endometrial interactions and maternal-fetal interface immune homeostasis.

10.
Int J Biol Sci ; 20(8): 2814-2832, 2024.
Article in English | MEDLINE | ID: mdl-38904028

ABSTRACT

Stable infiltration of myeloid cells, especially tumor-associated M2 macrophages, acts as one of the essential features of the tumor immune microenvironment by promoting the malignant progression of hepatocellular carcinoma (HCC). However, the factors affecting the infiltration of M2 macrophages are not fully understood. In this study, we found the molecular subtypes of HCC with the worst prognosis are characterized by immune disorders dominated by myeloid cell infiltration. Myeloid cell nuclear differentiation antigen (MNDA) was significantly elevated in the most aggressive subtype and exhibited a positively correlation with M2 infiltration and HCC metastasis. Moreover, MNDA functioned as an independent prognostic predictor and has a good synergistic effect with some existing prognostic clinical indicators. We further confirmed that MNDA was primarily expressed in tumor M2 macrophages and contributed to the enhancement of its polarization by upregulating the expression of the M2 polarization enhancers. Furthermore, MNDA could drive the secretion of M2 macrophage-derived pro-metastasis proteins to accelerate HCC cells metastasis both in vivo and in vitro. In summary, MNDA exerts a protumor role by promoting M2 macrophages polarization and HCC metastasis, and can serve as a potential biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Macrophages , Myeloid Cells , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Macrophages/metabolism , Myeloid Cells/metabolism , Animals , Cell Line, Tumor , Mice , Male , Tumor Microenvironment , Female , Neoplasm Metastasis
11.
Colloids Surf B Biointerfaces ; 241: 114049, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908043

ABSTRACT

The colonisation of microorganisms such as bacteria forms a biofilm barrier on the wound's surface, preventing or delaying the penetration of antibacterial drugs. At the same time, continuous bacterial infection can cause oxidative stress and an inflammatory response and hinder angiogenesis, resulting in difficult wound healing. Based on the "one stone, three birds" strategy, a multi-functional nanoparticle composite soluble microneedle was designed and developed to solve this dilemma better. Ginsenoside-liposomes(R-Lipo) were prepared by ginsenoside Rg3, which had the effect of promoting repair, instead of cholesterol, and loaded with berberine (Ber), the antibacterial component of Coptis, together with polydopamine (PDA), which had anti-inflammatory and antioxidant properties, into microneedles based on hyaluronic acid (PDA/R-Lipo@BerMN). PDA/R-Lipo@BerMN tip can penetrate and destroy the integrity of the biofilm, dissolve under the action of hyaluronidase in the skin, and gradually release the drug to achieve rapid antibacterial, anti-inflammatory, antioxidant, and proliferation. As expected, the PDA/R-Lipo@BerMN patch effectively cleared ROS during wound closure, further promoted M2 macrophage polarisation, eradicated bacterial infection, and regulated the immune microenvironment, promoting inflammation suppression, collagen deposition, angiogenesis, and tissue regeneration.

12.
Nat Commun ; 15(1): 5223, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890289

ABSTRACT

The commercialization of perovskite solar cells is badly limited by stability, an issue determined mainly by perovskite. Herein, inspired by a natural creeper that can cover the walls through suckers, we adopt polyhexamethyleneguanidine hydrochloride as a molecular creeper on perovskite to inhibit its decomposition starting from the annealing process. The molecule possesses a long-line molecular structure where the guanidinium groups can serve as suckers that strongly anchor cations through multiple hydrogen bonds. These features make the molecular creeper can cover perovskite grains and inhibit perovskite decomposition by suppressing cations' escape. The resulting planar perovskite solar cells achieve an efficiency of 25.42% (certificated 25.36%). Moreover, the perovskite film and device exhibit enhanced stability even under harsh damp-heat conditions. The devices can maintain >96% of their initial efficiency after 1300 hours of operation under 1-sun illumination and 1000 hours of storage under 85% RH, respectively.

13.
Front Bioeng Biotechnol ; 12: 1392824, 2024.
Article in English | MEDLINE | ID: mdl-38903184

ABSTRACT

Objective: To investigate the impact of diaphragmatic breathing combined with limb training on lower limb lymphedema following surgery for gynecological cancer. Methods: From January 2022 to May 2022, 60 patients with lower limb lymphedema post-gynecologic cancer surgery were chosen. They were split into a control group (n = 30) and a treatment group (n = 30). The control group underwent complex decongestive therapy (CDT) for managing lower limb lymphedema after gynecologic cancer surgery, while the treatment group received diaphragmatic breathing combined with limb coordination training alongside CDT. Both groups completed a 4-week treatment regimen. The lower limb lymphedema symptoms were evaluated using the genital, lower limb, buttock, and abdomen (GCLQ) scores; bilateral lower limb circumference measurements; and anxiety and depression scores. Results: Compared to sole CDT administration, individuals undergoing diaphragmatic breathing coupled with limb coordination training experienced notable reductions in scores for the self-perceived symptom assessment questionnaire (GCLQ), bilateral lower limb circumference, as well as anxiety and depression scores. Conclusion: The incorporation of diaphragmatic breathing combined withalongside limb coordination training can accelerate and augment the efficacy of treating lower limb lymphedema post-gynecologic cancer surgery.

14.
Clin Nutr ; 43(8): 1769-1780, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38936303

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.

15.
Magn Reson Chem ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867454

ABSTRACT

Copper(II) chloride anionic coordination complexes with different imidazole-derived ligands due to the potential cytotoxic activity play the important role in protein. By investigating the experimental electron paramagnetic resonance (EPR) and ultraviolet-visible (UV-vis) spectra of [CuCl(C6H10N2)4]Cl, [CuCl(C6H10N2)4]Cl, [CuCl2(C4H6N2)4], and [Cu2Cl2(C5H8N2)6]Cl2·2H2O, the local structure of the corresponding Cu2+ centers and the role of different ligands are obtained. Based on the well-agreed EPR parameters and the d-d transitions (10Dq), the four Cu2+ centers show tetragonal and orthorhombic distortion, corresponding to the different anisotropies of EPR signals. In addition, the general rules of governing the impact of methanol in imidazolylalkyl derivatives are also discussed, especially the influence on the local environment (symmetry, distortion, covalency, and crystal field) of above four copper(II) chloride anionic coordination complexes. Therefore, the obtained results in this study will be beneficial to provide a theoretical basis for the experimental design of desired copper-containing imidazolyl alkyl derivatives.

16.
Ther Apher Dial ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751182

ABSTRACT

INTRODUCTION: Therapeutic plasma exchange (TPE), an effective method to eliminate harmful soluble mediators associated with tissue injury, serves as a crucial intervention for systemic rheumatologic diseases (SRDs). However, its value in critically ill SRDs remains uncertain. This retrospective study aims to evaluate the efficacy of TPE in SRDs. METHODS: Critically ill SRD patients admitted to the department of intensive care unit of a large tertiary hospital receiving TPE from January 2011 to December 2019 were included. RESULTS: A total of 91 critically ill SRD patients received TPE were enrolled. Their mean age was 47.67 ± 16.35 years with a female predominance (n = 68). Significant decrease in SOFA score post-TPE treatment was observed (p < 0.05). There were no TPE-related fatalities. Improvement was observed in 64 (70.32%) patients. CONCLUSION: This study shows favorable clinical outcomes. TPE may be an acceptable treatment option for critically ill SRD patients.

17.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746129

ABSTRACT

The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.

18.
Chem Sci ; 15(20): 7586-7595, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784730

ABSTRACT

Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.

19.
Heliyon ; 10(10): e30986, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778944

ABSTRACT

Gastric cancer (GC) with high morbidity and mortality is one major cause of tumor-related death. Mechanisms underlying GC invasion and metastasis remain unclear. IGFBP7 exerted variable effects in different cancers and its role in GC is controversial. Here, IGFBP7 was found to be upregulated and elevated IGFBP7 expression represented a poorer overall survival in GC using bioinformatics analysis. Moreover, IGFBP7 was up-regulated in human GC specimens and promoted tumor growth in xenograft tumor animals. For GC cell lines, we found that IGFBP7 was also upregulated and facilitated the cell malignant behavior and EMT of GC cells, which may involve NF-κB and ERK signaling pathways. This research may provide new avenues for GC therapy.

20.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730827

ABSTRACT

In order to address the challenges of resource utilization posed by construction waste, the substitution of natural aggregate (NA) with public fill (PF) contents was investigated for load reclamation and road grassroots applications. A comprehensive assessment of road performance for the recycled mixture was conducted, focusing on parameters such as unconfined compressive strength, splitting strength, compressive resilience modulus, dry shrinkage, and frost resistance. Additionally, the impact of incorporating PF at various types and replacement ratios on the microstructure of cement-stabilized aggregate (CSA) was analyzed. The results indicated that the unconfined compressive strength of cement-stabilized recycled mixture with varying PF contents meets the base strength requirements for heavy, medium, and light traffic pavement on secondary and sub-secondary roads in China. Notably, the unconfined compressive strength and resilience modulus follow a similar pattern, reaching their peak at a 25% PF content. Microscopic examination reveals that an appropriate PF content leads to the predominant formation of C(N)-A-S-H, hydrotalcite, Ca(OH)2, and CaCO3 as paste reaction products. As the replacement of public fill increases from 0% to 25%, there is a gradual stacking of gel products, which enhances the compactness of the microstructure by cementing together unreacted particles. Consequently, this process reduces dry shrinkage strain and effectively mitigates the formation of reflection cracks. Applying large quantities of public fill to road construction can effectively deal with various waste accumulation problems and produce a novel road material with significant social, economic, and environmental benefits.

SELECTION OF CITATIONS
SEARCH DETAIL
...