Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.452
Filter
1.
Redox Rep ; 29(1): 2377870, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39010730

ABSTRACT

OBJECTIVES: To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS: Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS: We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS: Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.


Subject(s)
Mitophagy , Oxidative Stress , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Mitophagy/drug effects , Mitophagy/physiology , Mitochondria/metabolism , Mitochondria/drug effects , Adult , Cellular Microenvironment/physiology
2.
Biomed Pharmacother ; 177: 117130, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018873

ABSTRACT

In this study, the role of matrine, a component derived from traditional Chinese medicine, in modulating macrophage polarization and its effects on traumatic heterotopic ossification (HO) in mice was investigated. Traumatic HO is a pathological condition characterized by abnormal bone formation in nonskeletal tissues, often following severe trauma or surgery. The mechanisms underlying HO involve an enhanced inflammatory response and abnormal bone formation, with macrophages playing a crucial role. Our study demonstrated that matrine effectively inhibits the polarization of bone marrow-derived macrophages (BMDMs) toward the M2 phenotype, a subtype associated with anti-inflammatory processes and implicated in the progression of HO. Using in vitro assays, we showed that matrine suppresses key M2 markers and inhibits the MAPK signaling pathway in BMDMs. Furthermore, in vivo experiments revealed that matrine treatment significantly reduced HO formation in the Achilles tendons of mice and downregulated the expression of markers associated with M2 macrophages and the MAPK pathway. Our findings suggest that the ability of matrine to modulate macrophage polarization and inhibit the MAPK pathway has therapeutic potential for treating traumatic HO, providing a novel approach to managing this complex condition.

3.
Adv Sci (Weinh) ; : e2401370, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981042

ABSTRACT

Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown. In coupled acoustic resonators made with Archimedes spiral channel, the skyrmion hybridization is found giving rise to bonding and antibonding skyrmionic modes. Furthermore, it is experimentally observed that the skyrmionic mode of acoustic velocity field distribution can be robustly transferred covering a long distance and almost no distortion of the skyrmion textures in a chain of metastructures, even if a structure defect is introduced in the travel path. The proposed localized acoustic skyrmionic mode coupling and propagating is expected in future applications for manipulating acoustic information storage and transfer.

4.
Fitoterapia ; : 106122, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992474

ABSTRACT

Chemical investigation on the aqueous extract of Dendrobium aphyllum led to the isolation of thirty-one constituents with structures identified by analysis of the extensive spectroscopic data (1D/2D NMR, MS, UV, and ECD), including previously undescribed two bibenzyls, one furfural, and one phenolic acid, namely trigonopol D (1), trigonopol C (2), dendrofunan A (10), and 6-(4-hydroxy-3-methoxyphenyl)-3,6-dioxohexyl acetate (30), respectively, as well as twenty-seven known ones. Among them, there were one new natural product (11), seven compounds (6-7, 9, 12, 20, 28, 31) described from the genus Dendrobium for the first time, and fifteen compounds (8, 13-17, 19, 21-27, 29) isolated from D. aphyllum for the first time. Further, the antioxidant and anti-inflammatory potentials of fifteen compounds (4-5, 8, 11-12, 14-19, 22, 24, 26, and 29) with significant scavenging capacities against DPPH and hydroxyl radicals, and virtual docking activities inhibiting COX-2 and 5-LOX, respectively. Our study may draw the attention of medicinal plant taxonomists and supply potential quality markers for discrimination of D. aphyllum from other species in Dendrobium genus.

5.
World J Clin Cases ; 12(19): 3950-3955, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994291

ABSTRACT

BACKGROUND: We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient's subconjunctival space and orbit occurred after vitrectomy. CASE SUMMARY: A 30-year-old male patient sought medical attention at Ganzhou People's Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9, 2023. Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment. On December 9, 2023, pars plana vitrectomy was performed on the left eye for intraocular foreign body removal, abnormal crystal extraction, retinal photocoagulation. Owing to the discovery of retinal detachment at the posterior pole during surgery, silicone oil was injected to fill the vitreous body, following which upper conjunctival bubble-like swelling was observed. Postoperative orbital computed tomography (CT) review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet. On December 18, 2023, the patient sought treatment at the First Affiliated Hospital of Nanchang University, China. The patient presented with a pronounced foreign body sensation following left eye surgery. On December 20, 2023, the foreign body was removed from the left eye frame and an intraocular examination was conducted. The posterior scleral tear had closed, leading to termination of the surgical procedure following supplementary laser treatment around the tear. The patient reported a significant reduction in ocular surface symptoms just one day after surgery. Furthermore, a notable decrease in the migration of silicone oil was observed in orbital CT scans. CONCLUSION: The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration.

6.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998256

ABSTRACT

Steel products typically undergo intricate manufacturing processes, commencing from the liquid phase, with casting, hot rolling, and laminar cooling being among the most crucial processes. In the background of carbon neutrality, thin-slab casting and direct rolling (TSCR) technology has attracted significant attention, which integrates the above three processes into a simpler and more energy-efficient sequence compared to conventional methods. Multi-scale computational modeling and simulation play a crucial role in steel design and optimization, enabling the prediction of properties and microstructure in final steel products. This approach significantly reduces the time and cost of production compared to traditional trial-and-error methodologies. This study provides a review of cross-scale simulations focusing on the casting, hot-rolling, and laminar cooling processes, aiming at presenting the key techniques for realizing cross-scale simulation of the TSCR process.

7.
New Phytol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010694

ABSTRACT

Maize silk is a specialized type of stigma, covered with numerous papillae for pollen grain capture. However, the developmental process of stigmatic papillae and the underlying regulatory mechanisms have remained largely unknown. Here, we combined the cytological, genetic and molecular studies to demonstrate that three homologous genes ZmSPL10, ZmSPL14 and ZmSPL26 play a central role in promoting stigmatic papilla formation in maize. We show that their triple knockout mutants are nearly complete lack of stigmatic papilla, resulting in a severe reduction in kernel setting. Cellular examination reveals that stigmatic papilla is developed from a precursor cell, which is the smaller daughter cell resulting from asymmetric cell division of a silk epidermal cell. In situ hybridization shows that ZmSPL10, ZmSPL14 and their target genes SPI1, ZmPIN1b, ZmARF28 and ZmWOX3A are preferentially expressed in the precursor cells of stigmatic papillae. Moreover, ZmSPL10, ZmSPL14 and ZmSPL26 directly bind to the promoters of SPI1, ZmPIN1b, ZmARF28 and ZmWOX3A and promote their expression. Further, Zmwox3a knockout mutants display severe defects in stigmatic papilla formation and reduced seed setting. Collectively, our results demonstrate that ZmSPL10, ZmSPL14 and ZmSPL26 act together to promote stigmatic papilla development through regulating auxin signaling and ZmWOX3A expression.

8.
Front Immunol ; 15: 1395513, 2024.
Article in English | MEDLINE | ID: mdl-39011035

ABSTRACT

Background: Observational studies have indicated that immune dysregulation in primary sclerosing cholangitis (PSC) primarily involves intestinal-derived immune cells. However, the causal relationship between peripheral blood immune cells and PSC remains insufficiently understood. Methods: A bidirectional two-sample Mendelian randomization (MR) analysis was implemented to determine the causal effect between PBC and 731 immune cells. All datasets were extracted from a publicly available genetic database. The standard inverse variance weighted (IVW) method was selected as the main method for the causality analysis. Cochran's Q statistics and MR-Egger intercept were performed to evaluate heterogeneity and pleiotropy. Results: In forward MR analysis, the expression ratios of CD11c on CD62L+ myeloid DC (OR = 1.136, 95% CI = 1.032-1.250, p = 0.009) and CD62L-myeloid DC AC (OR = 1.267, 95% CI = 1.086-1.477, p = 0.003) were correlated with a higher risk of PSC. Each one standard deviation increase of CD28 on resting regulatory T cells (Treg) (OR = 0.724, 95% CI = 0.630-0.833, p < 0.001) and CD3 on secreting Treg (OR = 0.893, 95% CI = 0.823-0.969, p = 0.007) negatively associated with the risk of PSC. In reverse MR analysis, PSC was identified with a genetic causal effect on EM CD8+ T cell AC, CD8+ T cell AC, CD28- CD127- CD25++ CD8+ T cell AC, CD28- CD25++ CD8+ T cell AC, CD28- CD8+ T cell/CD8+ T cell, CD28- CD8+ T cell AC, and CD45 RA- CD28- CD8+ T cell AC. Conclusion: Our study indicated the evidence of causal effects between PSC and immune cells, which may provide a potential foundation for future diagnosis and treatment of PSC.


Subject(s)
Cholangitis, Sclerosing , Mendelian Randomization Analysis , Humans , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/genetics , Genetic Predisposition to Disease , T-Lymphocytes, Regulatory/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Polymorphism, Single Nucleotide
9.
World J Gastrointest Surg ; 16(6): 1734-1741, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983325

ABSTRACT

BACKGROUND: Conventional five-port laparoscopic surgery, the current standard treatment for colorectal carcinoma (CRC), has many disadvantages. AIM: To assess the influence of reduced-port laparoscopic surgery (RPLS) on perioperative indicators, postoperative recovery, and serum inflammation indexes in patients with CRC. METHODS: The study included 115 patients with CRC admitted between December 2019 and May 2023, 52 of whom underwent conventional five-port laparoscopic surgery (control group) and 63 of whom underwent RPLS (research group). Comparative analyses were performed on the following dimensions: Perioperative indicators [operation time (OT), incision length, intraoperative blood loss (IBL), and rate of conversion to laparotomy], postoperative recovery (first postoperative exhaust, bowel movement and oral food intake, and bowel sound recovery time), serum inflammation indexes [high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6)], postoperative complications (anastomotic leakage, incisional infection, bleeding, ileus), and therapeutic efficacy. RESULTS: The two groups had comparable OTs and IBL volumes. However, the research group had a smaller incision length; lower rates of conversion to laparotomy and postoperative total complication; and shorter time of first postoperative exhaust, bowel movement, oral food intake, and bowel sound recovery; all of which were significant. Furthermore, hs-CRP, IL-6, and TNF-α levels in the research group were significantly lower than the baseline and those of the control group, and the total effective rate was higher. CONCLUSION: RPLS exhibited significant therapeutic efficacy in CRC, resulting in a shorter incision length and a lower conversion rate to laparotomy, while also promoting postoperative recovery, effectively inhibiting the inflammatory response, and reducing the risk of postoperative complications.

10.
JCI Insight ; 9(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973609

ABSTRACT

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.


Subject(s)
Down-Regulation , Hypertriglyceridemia , Lipoprotein Lipase , Receptor, PAR-2 , Animals , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Mice , Humans , Receptor, PAR-2/metabolism , Receptor, PAR-2/genetics , Male , Mice, Knockout , Triglycerides/metabolism , Triglycerides/blood , Adipose Tissue, White/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Adipocytes/metabolism , Obesity/metabolism , Obesity/genetics , Palmitic Acid/metabolism , Female , Mice, Inbred C57BL , Middle Aged
11.
J Pharm Anal ; 14(6): 100950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027911

ABSTRACT

Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer (CRC). Cisplatin (DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair. Among the elements that lead to DDP resistance, O 6-methylguanine (O 6-MG)-DNA-methyltransferase (MGMT), a DNA-repair enzyme, performs a quintessential role. In this study, we clarify the significant involvement of MGMT in conferring DDP resistance in CRC, elucidating the underlying mechanism of the regulatory actions of MGMT. A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study, and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo. Conversely, in cancer cells, MGMT overexpression abolishes their sensitivity to DDP treatment. Mechanistically, the interaction between MGMT and cyclin dependent kinase 1 (CDK1) inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1. Meanwhile, to achieve nonhomologous end joining, MGMT interacts with XRCC6 to resist chemotherapy drugs. Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation, and several Wnt inhibitors can repress drug-resistant cells. In summary, our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.

12.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892448

ABSTRACT

Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.


Subject(s)
Cell Death , Hippocampus , Pyramidal Cells , Seizures , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Hippocampus/metabolism , Hippocampus/pathology , Seizures/metabolism , Seizures/pathology , Status Epilepticus/metabolism , Status Epilepticus/pathology , Status Epilepticus/chemically induced , Male , Neurons/metabolism , Pilocarpine , Long-Term Potentiation , Mice, Knockout , Mice, Inbred C57BL , Neuronal Plasticity
13.
Int J Surg ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38896869

ABSTRACT

BACKGROUND: Laparoscopic cholecystectomy (LC) is the gold standard for treating symptomatic gallstones but carries inherent risks like bile duct injury (BDI). While critical view of safety (CVS) is advocated to mitigate BDI, its real-world adoption is limited. Additionally, significant variations in surgeon performance impede procedural standardization, highlighting the need for a feasible, innovative, and effective training approach. The aim of this study is to develop an Artificial Intelligence (AI)-assisted coaching program for LC to enhance surgical education and improve surgeon's performance. MATERIALS AND METHODS: We conducted a multi-center, randomized controlled trial from May 2022 to August 2023 to assess the impact of an AI-based coaching program, SmartCoach, on novice performing LC. Surgeons and patients meeting specific inclusion criteria were randomly assigned to either a coaching group with AI-enhanced feedback or a self-learning group. The primary outcome was assessed using the Laparoscopic Cholecystectomy Rating Form (LCRF), with secondary outcomes including surgical safety, efficiency, and adverse events. Statistical analyses were performed using SPSS, with significance set at P-value less than 0.05. RESULTS: Between May 2022 and August 2023, 22 surgeons were initially enrolled from 10 hospitals, with 18 completing the study. No demographic differences were noted between coaching and self-learning groups. In terms of surgical performance (LCRF scores), the coaching group showed significant improvement over time (31 to 40, P=0.008), outperforming the self-learning group by study end (40 vs 38, P=0.032). Significant improvements in CVS achievement were also noted in the coaching group (11% to 78%, P=0.021). Overall, the coaching program was well-received, outpacing traditional educational methods in both understanding and execution of CVS and participants in the intervention group expressed strongly satisfaction with the program. CONCLUSIONS: The AI-assisted surgical coaching program effectively improved surgical performance and safety for novice surgeons in LC procedures. The model holds significant promise for advancing surgical education.

15.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892054

ABSTRACT

MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Animals , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Cancer Immunol Immunother ; 73(8): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833156

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship between signal regulatory protein gamma (SIRPG) and tumor immune microenvironment phenotypes or T cell mediated-adaptive antitumor immunity, and its predictive value for response to PD-1 blockade in cancers. METHODS: Pan-cancer analysis of SIRPG expression and immune deconvolution was performed using transcriptomic data across 33 tumor types. Transcriptomic and clinical data from 157 patients with non-small-cell lung cancer (NSCLC) and melanoma received PD-1 blockade were analyzed. Expression characteristics of SIRPG were investigated using single-cell RNA sequencing (scRNA-seq) data of 103,599 cells. The effect of SIRPG expression was evaluated via SIRPG knockdown or overexpression in Jurkat T cells. RESULTS: The results showed that most cancers with high SIRPG expression had significantly higher abundance of T cells, B cells, NK cells, M1 macrophages and cytotoxic lymphocytes and increased expression level of immunomodulatory factors regulating immune cell recruitment, antigen presentation, T cell activation and cytotoxicity, but markedly lower abundance of neutrophils, M2 macrophages, and myeloid-derived suppressor cells. High SIRPG expression was associated with favorable response to PD-1 blockade in both NSCLC and melanoma. scRNA-seq data suggested SIRPG was mainly expressed in CD8+ exhausted T and CD4+ regulatory T cells, and positively associated with immune checkpoint expression including PDCD1 and CTLA4. In vitro test showed SIRPG expression in T cells could facilitate expression of PDCD1 and CTLA4. CONCLUSION: High SIRPG expression is associated with an inflamed immune phenotype in cancers and favorable response to PD-1 blockade, suggesting it would be a promising predictive biomarker for PD-1 blockade and novel immunotherapeutic target.


Subject(s)
Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Biomarkers, Tumor/metabolism , Melanoma/immunology , Melanoma/metabolism , Melanoma/genetics
17.
Chem Soc Rev ; 53(13): 6992-7090, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38841828

ABSTRACT

Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.


Subject(s)
Agriculture , Fluorescent Dyes , Plants , Fluorescent Dyes/chemistry , Plants/chemistry , Plants/metabolism , Optical Imaging
18.
Animals (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891613

ABSTRACT

The gut microbiota of wild animals can regulate host physical health to adapt to the environment. High-throughput sequencing from fecal samples was used to analyze the gut microbiota communities in common cranes (Grus grus) without harming them. Herein, we compared the fecal microbiome of fifteen G. grus in Tianjin Tuanbo Bird Natural Reserve (wild group) and six G. grus sampled from Beijing Wildlife Park (semi-captive group) in China, using 16S amplicon sequencing and bioinformatic analysis. The results showed that microbiota diversity and composition varied in different groups, suggesting that the gut microbiota was interactively influenced by diet and the environment. A total of 38 phyla and 776 genera were analyzed in this study. The dominant phyla of the G. grus were Firmicutes and Proteobacteria. Meanwhile, the microbiota richness of the semi-captive group was higher than the wild group. Data on beta diversity highlighted significant differences based on different dietary compositions. Zea mays, Glycine max, and Phragmites australia showed a significant correlation with intestinal bacteria of G. grus. This study provides a comprehensive analysis of diet and microbiomes in semi-captive and wild G. grus living in different environments, thus helping us to evaluate the influence on animal microbiomes and improve conservation efforts for this species.

19.
Sci Rep ; 14(1): 13044, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844441

ABSTRACT

High intraocular pressure (IOP) is one of the early complications after pars plana vitrectomy (PPV), which may cause glaucoma and poor visual prognosis secondary to surgery. Proliferative vitreoretinopathy (PVR) is one of the complications of retinal detachment (RD) and is the main reason for the poor prognosis, which is related to different kinds of cytokines. It's essential for the basic mechanism to analyze the relative aqueous humor cytokine profiles with IOP after PPV for RD. In this study, we have collected the aqueous humor of 16 patients and qualified 27 cytokines using Luminex and compared biomarkers with the high IOP group and the normal group. As a result, the concentrations of VEGF, IL-6, FGF2, and G-CSF upregulated significantly (P < 0.05), while VEGFR2 downregulated significantly (P < 0.05) in the high IOP group. IL-6 was positively correlated with high IOP (r = 0.561, P = 0.041). Meanwhile, the concentrations of IL-6 (r = 0.543, P = 0.03), IL-5 (r = 0.576, P = 0.019), IL-15 (r = 0.614, P = 0.011), IL-4 (r = 0.517, P = 0.04), ICAM-1 (r = 0.611, P = 0.012), and G-CSF (r = 0.636, P = 0.008) were significantly associated with preoperative PVR classification, and the aqueous humor levels of IL-4 (r = 0.567, P = 0.022), HGF (r = 0.701, P = 0.005), and MCP-1 (r = 0.565, P = 0.035) are significant relative to laser points. Hence, cytokines might potentially be the therapeutic target of high IOP after PPV.


Subject(s)
Aqueous Humor , Cytokines , Intraocular Pressure , Retinal Detachment , Vitrectomy , Humans , Retinal Detachment/surgery , Retinal Detachment/metabolism , Aqueous Humor/metabolism , Female , Male , Cytokines/metabolism , Intraocular Pressure/physiology , Middle Aged , Vitrectomy/adverse effects , Aged , Adult , Biomarkers/metabolism , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/etiology
20.
iScience ; 27(6): 109979, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832007

ABSTRACT

This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...