Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.435
Filter
1.
Plant Cell Environ ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016637

ABSTRACT

Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.

2.
Nat Commun ; 15(1): 6043, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025845

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.


Subject(s)
CD47 Antigen , Carcinoma, Pancreatic Ductal , Epithelial-Mesenchymal Transition , Extracellular Traps , Liver Neoplasms , Macrophages , Necroptosis , Pancreatic Neoplasms , Protein Kinases , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , CD47 Antigen/metabolism , CD47 Antigen/genetics , Protein Kinases/metabolism , Extracellular Traps/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Male , Signal Transduction , Female , Acrylamides , Sulfonamides
3.
J Org Chem ; 89(14): 10012-10020, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38952027

ABSTRACT

A visible-light-induced radical-radical cross-coupling reaction between 1,3,4-oxadiazoles and hydroxamic acid derivatives has been realized under base- and metal-free conditions. The protocol was characterized by broad substrate scope, excellent functional group tolerance, and simple operation procedures. By using this protocol, a variety of biologically important 5-aryl-1,3,4-oxadiazole-2-methylamines were obtained in good yields with excellent chemoselectivity.

4.
J Org Chem ; 89(14): 10112-10126, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38959135

ABSTRACT

A photoredox-promoted decarboxylative C-H glycosylation for the synthesis of nonclassical heteroaryl C-glycosides is reported. This methodology is characterized by an exceedingly simple reaction system, high diastereoselectivity, and good functional group tolerance. Moreover, the operational procedure is simple, and the gram-scale reaction highlights the practical applicability of this protocol.

5.
PLoS One ; 19(7): e0307318, 2024.
Article in English | MEDLINE | ID: mdl-38990840

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0268175.].

6.
Eur J Med Chem ; 275: 116632, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959726

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.


Subject(s)
Drug Design , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Structure-Activity Relationship , Binding Sites , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis
7.
Drug Metab Dispos ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997155

ABSTRACT

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the U.S. FDA. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor ({plus minus})-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 h after peritoneal injection with or without DCMB (80 mg/kg). Compared to the control group, the plasma of DCMB-pretreated rats exhibited C max decrease and T max delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2) and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in AUC or t 1/2 were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 h, although the rate of vicagrel excretion slowed down within 48 h. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 h. Significance Statement This study used LC-MS/MS combined with radiolabeling technology to investigate the effects of the TMT inhibitor DCMB on the absorption, metabolism and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel and vicagrel, etc.

8.
BMC Musculoskelet Disord ; 25(1): 526, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982393

ABSTRACT

BACKGROUND AND OBJECTIVE: Complex acetabular fractures involving quadrilateral areas are more challenging to treat during surgery. To date, there has been no ideal internal fixation for these acetabular fractures. The purpose of this study was to evaluate the biomechanical stability of complex acetabular fractures using a dynamic anterior titanium-plate screw system of the quadrilateral area (DAPSQ) by simulating the standing and sitting positions of pelvic specimens. MATERIALS AND METHODS: Eight formal in-preserved cadaveric pelvises aged 30-50 years were selected as the research objects. First, one hip of the normal pelvises was randomly used as the control model (group B) for measurement, and then one hip of the pelvises was randomly selected to make the fracture model in the 8 intact pelvises as the experimental model (group A) for measurement. In group A, acetabular both-column fractures in the quadrilateral area were established, and the fractures were fixed by DAPSQ. The biomechanical testing machine was used to load (simulated physiological load) from 400 N to 700 N at a 1 mm/min speed for 30 s in the vertical direction when the specimens were measured at random in simulated standing or sitting positions in groups. The horizontal displacement and longitudinal displacement of the acetabular fractures in the quadrilateral area were measured in both the standing and sitting simulations. RESULTS: As the load increased, no dislocation or internal fixation breakage occurred during the measurements. In the standing position, the horizontal displacement of the quadrilateral area fractures in group A and group B appeared to be less than 1 mm with loads ranging from 400 N to 700 N, and there was no significant difference between group A and group B (p > 0.05). The longitudinal displacement appeared to be greater than 1 mm with a load of 700 mm in group A (700 N, 2 cases), and the difference was significant between group A and group B (p < 0.05). In the sitting position, the horizontal and longitudinal displacements of the quadrilateral areas were within 0.5 mm in group A and group B, and there was no significant difference between group A and group B (p > 0.05). CONCLUSION: For complex acetabular fractures in the quadrilateral area, DAPSQ fixation may provide early sitting stability, but it is inappropriate for patients to stand too early.


Subject(s)
Acetabulum , Bone Plates , Bone Screws , Fracture Fixation, Internal , Fractures, Bone , Titanium , Humans , Acetabulum/surgery , Acetabulum/injuries , Biomechanical Phenomena , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Adult , Middle Aged , Fractures, Bone/surgery , Fractures, Bone/physiopathology , Male , Female , Cadaver
9.
Environ Monit Assess ; 196(7): 675, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951302

ABSTRACT

Vegetation is an important link between land, atmosphere, and water, making its changes of great significance. However, existing research has predominantly focused on long-term vegetation changes, neglecting the intra-annual variations of vegetation. Hence, this study is based on the Enhanced Vegetation Index (EVI) data from 2000 to 2022, with a time step of 16 days, to analyze the intra-annual patterns of vegetation changes in China. The average intra-annual EVI values for each municipal-level administrative region were calculated, and the time-series k-means clustering algorithm was employed to divide these regions, exploring the spatial variations in China's intra-annual vegetation changes. Finally, the ridge regression and random forest methods were utilized to assess the drivers of intra-annual vegetation changes. The results showed that: (1) China's vegetation status exhibits a notable intra-annual variation pattern of "high in summer and low in winter," and the changes are more pronounced in the northern regions than in the southern regions; (2) the intra-annual vegetation changes exhibit remarkable regional disparities, and China can be optimally clustered into four distinct clusters, which align well with China's temperature and precipitation zones; and (3) the intra-annual vegetation changes demonstrate significant correlations with meteorological factors such as dew point temperature, precipitation, maximum temperature, and sea-level pressure. In conclusion, our study reveals the characteristics, spatial patterns and driving forces of intra-annual vegetation changes in China, which contribute to explaining ecosystem response mechanisms, providing valuable insights for ecological research and the formulation of ecological conservation and management strategies.


Subject(s)
Environmental Monitoring , Remote Sensing Technology , China , Seasons , Plants , Cluster Analysis , Ecosystem
10.
Org Biomol Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007287

ABSTRACT

Simple and practical strategies for visible-light-induced C-H alkylation of 2-amino-1,4-naphthoquinones with cyclobutanone oxime esters and hydroxamic acid derivatives have been developed under mild and redox-neutral conditions. These two reactions can be carried out at room temperature and obtain a variety of 2-amino-1,4-naphthoquinone derivatives with cyano and amide groups. Moreover, the cyanoalkylation reaction of 2-amino-1,4-naphthoquinones can proceed smoothly in the absence of photocatalysts.

11.
Cell Rep Med ; 5(7): 101645, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019012

ABSTRACT

Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.


Subject(s)
Aniline Compounds , Cell Cycle Proteins , Drug Synergism , Leukemia, Myeloid, Acute , Metformin , Mutation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Pyrazines , Signal Transduction , fms-Like Tyrosine Kinase 3 , Metformin/pharmacology , Metformin/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Humans , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Signal Transduction/drug effects , Pyrazines/pharmacology , Pyrazines/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mice , Mutation/genetics , Cell Line, Tumor , Thiophenes/pharmacology , Thiophenes/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Female , Xenograft Model Antitumor Assays , Male , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , TOR Serine-Threonine Kinases/metabolism
12.
Analyst ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874099

ABSTRACT

Persistent luminescent nanoparticles (PLNPs) are excellent luminescent materials, and near-infrared PLNPs are efficiently applied for biosensing and bioimaging due to their advantages of no excitation, excellent light stability and long afterglow. However, due to interference from the complex environment within organisms, single-mode imaging methods often face limitations in selectivity, sensitivity, and accuracy. Therefore, it is desirable to construct a dual-mode imaging probe strategy with higher specificity and sensitivity for bioimaging. Magnetic resonance imaging (MRI) has been widely used in the field of bioimaging due to its advantages of high resolution, non-radiation and non-invasiveness. Here, by combining near-infrared PLNPs and manganese dioxide (MnO2) nanosheets, a sensitive and convenient dual-mode "turn on" bioimaging nanoprobe ZGC@MnO2 has been developed for long afterglow imaging and MRI of endogenous hydrogen peroxide (H2O2) in the tumor microenvironment (TME). The monitoring of H2O2 has garnered significant attention due to its crucial role in human pathologies. For the dual-mode "turn on" bioimaging nanoprobe, the near-infrared PLNPs of quasi-spherical ZnGa2O4:Cr (ZGC) nanoparticles were synthesized as luminophores, and MnO2 nanosheets were utilized as a fluorescence quencher, carrier and H2O2 recognizer. H2O2 in the TME could reduce MnO2 nanosheets to Mn2+ for MRI, and ZGC nanoparticles were released for long afterglow imaging. Finally, the ZGC@MnO2 nanoprobe exhibited a rapid response, an excellent signal-to-noise ratio and a limit of detection of 3.67 nM for endogenous H2O2 in the TME. This dual-mode approach enhances the detection sensitivity for endogenous H2O2, thereby facilitating the research of endogenous H2O2-associated diseases and clinical diagnostics.

13.
Adv Sci (Weinh) ; : e2404269, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874326

ABSTRACT

Artificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported. Here, a series of artificial LHSs is introduced featuring up to 4-step energy transfer mechanism, constructed using a cyclic peptide-based supramolecular scaffold. These LHSs showed remarkably high energy transfer efficiencies (≥90%) and satisfactory fluorescence quantum yields (ranging from 17.6% to 58.4%). Furthermore, the structural robustness of the supramolecular scaffold enables a comprehensive study of these systems, elucidating the associated energy transfer pathways, and identifying additional energy transfer processes beyond the targeted sequential energy transfer. Overall, this comprehensive investigation not only enhances the understanding of these LHSs, but also underscores the versatility of cyclic peptide-based supramolecular scaffolds in advancing energy harvesting technologies.

14.
Phys Rev E ; 109(5-1): 054312, 2024 May.
Article in English | MEDLINE | ID: mdl-38907474

ABSTRACT

The Brain Connectome Project has made significant strides in uncovering the structural connections within the brain on various levels. This has led to the question of how brain structure and function are related. Our research explores this relationship in an adaptive neural network in which synaptic conductance between neurons follows spike-time synaptic plasticity rules. By adjusting the plasticity boundary, the network exhibits diverse collective behaviors, including phase synchronization, phase locking, hierarchical synchronization (phase clusters), and coexisting states. Using graph theory, we found that hierarchical synchronization is related to the community structure, while coexisting states are related to the hierarchical self-organizing and core-periphery structure. The network evolves into several tightly connected modules, with sparsely intermodule connections resulting in the formation of phase clusters. In addition, the hierarchical self-organizing structure facilitates the emergence of coexisting states. The coexistence state promotes the evolution of the core-periphery structure. Our results point towards the equivalence between function and structure, with function emerging from structure, and structure being influenced by function in a complex dynamic process.

15.
ACS Omega ; 9(24): 26112-26120, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911748

ABSTRACT

Molecules with both aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) properties are potential organic light-emitting diode materials; however, the AIE and TADF mechanisms are still debatable. In this work, four molecules incorporating carbazole (Cz), phenoxazine (PXZ), and phenothiazine (PTZ) as donor groups to the diphenylsulfone acceptor were investigated. The experiment results indicate that a molecule containing Cz exhibits solely TADF properties, whereas molecules containing PXZ and PTZ demonstrate both TADF and AIE characteristics. As for DPS-PTZ, the result indicates that the thin-film environment restricts molecular twisting, consequently reducing nonradiative decay, thereby attributing to the AIE property by density functional theory and molecular dynamics simulation. As for DPS-PXZ, the result suggests that the restricted access to a conical intersection in a singlet excited via an expansion in the C-S-C angle is the pivotal factor for the AIE characteristic. The C-S-C angle twist of DPS-PXZ is impeded in the aggregate state and resulted in luminescence. Understanding the mechanisms serves as a valuable guide for the development of new AIE systems, enabling their application in various practical domains.

16.
Foot Ankle Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853037

ABSTRACT

BACKGROUND: Solely relying on the tibial ankle surface (TAS) angle for determining the mechanical ankle axis might be insufficient. We introduce a novel method to determine the distance from the center of the talus to the tibial axis (TTD). This study aimed to investigate the association between clinical outcomes and radiological changes before and after supramalleolar osteotomy (SMO), including TAS angle, talar tilt (TT) angle, tibiotalar surface (TTS) angle and TTD. METHODS: Seventy patients who received SMO were enrolled. Radiological changes were measured using weight-bearing anteroposterior imaging. The percentage of talar center displacement (TTDP) was calculated as the difference between postoperative and preoperative TTD, divided by talar width (TW). Clinical assessments were performed using the American Orthopedic Foot and Ankle Society ankle-hindfoot (AOFAS) scale. Differences in the aforementioned indicators before and after the operation were analyzed. We defined ΔAOFAS, ΔTAS, ΔTT and ΔTTS as the difference between postoperative and preoperative values. RESULTS: ΔTTS correlated with ΔAOFAS (r = 0.40, p = 0.008), as did TTDP (r = 0.32, p = 0.035). No correlation was observed between ΔAOFAS and ΔTAS. In the comparison between groups, patients with a TTDP greater than 26.19 exhibited a significantly greater ΔAOFAS. The high intraclass correlation coefficient indicated good reliability of the novel method. CONCLUSION: Solely relying on the TAS angle for tibial correction was insufficient. We found TTD as a novel method to evaluate mechanical ankle joint axis. TTDP and ΔTTS both positively correlated with ΔAOFAS, indicating the usefulness of these radiologic parameters.

17.
Angew Chem Int Ed Engl ; : e202406407, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862386

ABSTRACT

The design of admire hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid-assisted training is designed to enable multiple improvement of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The acid-assisted training is simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid-containing poly (sodium acrylate) hydrogels newly generate anti-swelling and self-healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid-containing hydrogels is further fully transformed via acid-infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully-trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully-trained hydrogels to ensure superior stretchability of 8.6. The acid-assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid-assisted training strategy here is general for poly (sodium acrylate) hydrogels.

18.
Urol J ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863317

ABSTRACT

PURPOSE: Chromosome 7 open reading frame 61 (C7orf 61) was a testis-specific gene, and may be involved in the process of spermatogenesis. This study was aimed to investigate the expression of C7orf61 in the testis and determine its role in spermatogenesis. Materials and Medhods: Reverse transcription-quantitative polymerase chain reaction, Western blot and immunofluorescence were performed to evaluate the expression characteristics of C7orf61 in mice and humans. In vitro fertilization assay was used to determine the role of the C7ORF61 protein in sperm-egg fusion. RESULTS: The results demonstrated that C7orf61 was a testis-specific gene; the C7ofr61 mRNA expression level sharply increased in the fourth postnatal week and gradually increased until the adult stage. The C7ORF61 protein was located throughout the subacrosomal area and close to the nucleus in both mouse and human sperm. The incubation with the C7ORF61 antibody significantly decreased the fertilization rate of mouse eggs. CONCLUSION: The present findings suggested that the C7ORF61 protein might be involved in sperm-egg fusion, and could serve as a useful target for contraceptives. However, further research is still needed to know the detailed molecular mechanism of its role.

19.
J Pharm Biomed Anal ; 247: 116268, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823222

ABSTRACT

Methotrexate (MTX) is commonly prescribed as the initial treatment for gestational trophoblastic neoplasia (GTN), but MTX monotherapy may not be effective for high-risk GTN and choriocarcinoma. The cellular uptake of MTX is essential for its pharmacological activity. Thus, our study aimed to investigate the cellular pharmacokinetics and transport mechanisms of MTX in choriocarcinoma cells. For the quantification of MTX concentrations in cellular matrix, a liquid chromatography-tandem mass spectrometry method was created and confirmed initially. MTX accumulation in BeWo, JEG-3, and JAR cells was minimal. Additionally, the mRNA levels of folate receptor α (FRα) and breast cancer resistance protein (BCRP) were relatively high in the three choriocarcinoma cell lines, whereas proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and organic anion transporter (OAT) 4 were low. Furthermore, the expression of other transporters was either very low or undetectable. Notably, the application of inhibitors and small interfering RNAs (siRNAs) targeting FRα, RFC, and PCFT led to a notable decrease in the accumulation of MTX in BeWo cells. Conversely, the co-administration of multidrug resistance protein 1 (MDR1) and BCRP inhibitors increased MTX accumulation. In addition, inhibitors of OATs and organic-anion transporting polypeptides (OATPs) reduced MTX accumulation, while peptide transporter inhibitors had no effect. Results from siRNA knockdown experiments and transporter overexpression cell models indicated that MTX was not a substrate of nucleoside transporters. In conclusion, the results indicate that FRα and multiple transporters such as PCFT, RFC, OAT4, and OATPs are likely involved in the uptake of MTX, whereas MDR1 and BCRP are implicated in the efflux of MTX from choriocarcinoma cells. These results have implications for predicting transporter-mediated drug interactions and offer potential directions for further research on enhancing MTX sensitivity.


Subject(s)
Choriocarcinoma , Methotrexate , Tandem Mass Spectrometry , Methotrexate/pharmacology , Humans , Choriocarcinoma/metabolism , Choriocarcinoma/drug therapy , Tandem Mass Spectrometry/methods , Cell Line, Tumor , Biological Transport , Chromatography, Liquid/methods , Female , Neoplasm Proteins/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Pregnancy , Folate Receptor 1/metabolism , Folate Receptor 1/genetics , RNA, Small Interfering , Reduced Folate Carrier Protein/metabolism , Reduced Folate Carrier Protein/genetics , Liquid Chromatography-Mass Spectrometry
20.
J Am Chem Soc ; 146(27): 18616-18625, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38924516

ABSTRACT

We report a general and functional-group-tolerant method for the Cu-catalyzed amination of base-sensitive aryl bromides including substrates possessing acidic functional groups and small five-membered heteroarenes. The results presented herein substantially expand the scope of Cu-catalyzed C-N coupling reactions. The combination of L8, an anionic N1,N2-diarylbenzene-1,2-diamine ligand, along with the mild base NaOTMS leads to the formation of a stable yet reactive catalyst that resists deactivation from coordination to heterocycles or charged intermediates. This system enables the use of low catalyst and ligand loadings. Exploiting the differences in nucleophile deprotonation in C-O and C-N coupling reactions catalyzed by Cu·L8 we developed a method to chemoselectively N- and O-arylate a variety of amino alcohol substrates. Employing NaOt-Bu as the base resulted exclusively in C-O coupling when the amino alcohols featured primary alcohols and more hindered amines or aniline groups. Utilizing NaOTMS enabled the ability to override the steric-based selectivity of these reactions completely and exclusively promoted C-N coupling regardless of the structure of the amino alcohol. The ability to invert the observed chemoselectivity is distinct from previously described methods that require protecting group manipulations or rely entirely on steric effects to control reactivity. These results substantially improve the scope of Cu-catalyzed C-N coupling reactions using N1,N2-diarylbenzene-1,2-diamine ligands and introduce a new chemoselective method to arylate amino alcohols.


Subject(s)
Amino Alcohols , Copper , Copper/chemistry , Catalysis , Amination , Amino Alcohols/chemistry , Molecular Structure , Bromides/chemistry , Hydrocarbons, Brominated/chemistry , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...