Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 199(2): 301-315, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38539046

ABSTRACT

Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 µg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1ß, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 µg/cm2 concentrations. Only 50 µg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.


Subject(s)
Air Pollutants , Epithelial Cells , Incineration , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Inflammation/metabolism , Plastics/toxicity , Energy Metabolism/drug effects , Cells, Cultured , Cytokines/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Glutathione/metabolism , Smoke/adverse effects , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Inhalation Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...