Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Sci Rep ; 14(1): 14077, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890397

ABSTRACT

Extracorporeal haemofiltration devices that selectively remove cytokines could represent an adjunctive treatment in inflammatory diseases. One such device is the "IL-6-Sieve", wherein magnetic Anti-IL-6 Beads are introduced into an extracorporeal circuit via a Bead Adapter and then removed along with any surface-bound interleukin (IL)-6 by a Filter deployed in a Magnet, before the blood is returned to the patient. We report here on a series of animal studies, and a first-in-human study, on the safety of the IL-6-Sieve. Evaluations focused on the: (a) safety of Filter and Magnet placed in an extracorporeal circuit in sheep; (b) safety of Anti-IL-6 Beads-directly infused intravenously as worst case scenario of misuse; or injected into an extracorporeal circuit using the Bead Adapter, Filter, and Magnet as intended-in sheep; (c) biodistribution of Anti-IL-6 Beads intravenously infused in mice; and (d) safety of Filter and Magnet placed in an extracorporeal circuit in healthy volunteers. No serious adverse events or significant changes in vital signs or routine laboratory parameters occurred in any of the animals or humans. Although safety of the IL-6-Sieve requires further study, these initial evaluations represent a promising start for the translation of this new blood purification modality into clinical use.


Subject(s)
Hemofiltration , Interleukin-6 , Hemofiltration/instrumentation , Hemofiltration/methods , Animals , Humans , Sheep , Mice , Interleukin-6/blood , Female , Male , Adult
3.
J Crit Care ; 83: 154827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718462

ABSTRACT

PURPOSE: We investigated the association between the administration of phosphodiesterase 3 inhibitors (PDE3i) and lactate kinetics, resolution of organ failure, ICU and hospital length of stay (LOS) and hospital mortality in a retrospective cohort of patients with septic shock and persistently elevated lactate concentrations. MATERIAL AND METHODS: Patients with septic shock and two arterial lactate concentrations ≥4 mmol/L with at least 4 h between measurements were eligible. Clinical data of the first four days of admission were collected in an online database. For each patient, the area between the actual lactate concentrations and 2.2 mmol/L (AUClact2.2), was calculated for three days. RESULTS: Data on 229 patients from 10 hospitals were collected, of whom 123 received PDE3i (54%). First, a linear multivariate model was developed to predict AUClact2.2 (R2 = 0.57). Adding PDE3i as a cofactor did not affect R2. Second, 60 patients receiving PDE3i at any time between days 0 and 2 were compared to 60 propensity matched no-PDE3i patients. Third, 30 patients who received PDE3i from ICU admission to day 3 were compared to 30 propensity-matched no-PDE3i patients. These analyses showed no differences in AUClact2.2, SOFA scores, ICU or hospital LOS or hospital mortality between treatment groups. CONCLUSIONS: No association was found between the administration of PDE3i and lactate kinetics, resolution of organ failure, ICU or hospital LOS or hospital mortality.

4.
Crit Care Med ; 52(3): e152-e153, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38381019

Subject(s)
Interleukin-6
5.
Crit Care ; 27(1): 117, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36945034

ABSTRACT

BACKGROUND: The CytoSorb hemoadsorption device has been demonstrated to be capable of clearing inflammatory cytokines, but has not yet been shown to attenuate plasma cytokine concentrations. We investigated the effects of CytoSorb hemoperfusion on plasma levels of various cytokines using the repeated human experimental endotoxemia model, a highly standardized and reproducible human in vivo model of systemic inflammation and immunological tolerance induced by administration of bacterial lipopolysaccharide (LPS). METHODS: Twenty-four healthy male volunteers (age 18-35) were intravenously challenged with LPS (a bolus of 1 ng/kg followed by continuous infusion of 0.5 ng/kg/hr for three hours) twice: on day 0 to quantify the initial cytokine response and on day 7 to quantify the degree of endotoxin tolerance. Subjects either received CytoSorb hemoperfusion during the first LPS challenge (CytoSorb group), or no intervention (control group). Plasma cytokine concentrations and clearance rates were determined serially. This study was registered at ClinicalTrials.gov (NCT04643639, date of registration November 24th 2020). RESULTS: LPS administration led to a profound increase in plasma cytokine concentrations during both LPS challenge days. Compared to the control group, significantly lower plasma levels of tumor necrosis factor (TNF, - 58%, p < 0.0001), interleukin (IL)-6 ( - 71%, p = 0.003), IL-8 ( - 48%, p = 0.02) and IL-10 ( - 26%, p = 0.03) were observed in the CytoSorb group during the first LPS challenge. No differences in cytokine responses were observed during the second LPS challenge. CONCLUSIONS: CytoSorb hemoperfusion effectively attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo, whereas it does not affect long-term immune function. Therefore, CytoSorb therapy may be of benefit in conditions characterized by excessive cytokine release.


Subject(s)
Cytokines , Hemoperfusion , Humans , Male , Adolescent , Young Adult , Adult , Lipopolysaccharides , Interleukin-6 , Inflammation
6.
J Innate Immun ; : 1-14, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35940121

ABSTRACT

Cytokine production by ex vivo (EV)-stimulated leukocytes is commonly used to gauge immune function and frequently proposed to guide immunomodulatory therapy. However, whether EV cytokine production capacity accurately reflects the in vivo (IV) immune status is largely unknown. We investigated relationships between EV monocyte cytokine responses and IV cytokine responses in a large cohort of healthy volunteers using a highly standardized IV model of short-lived LPS-induced systemic inflammation, which captures hallmarks of both hyperinflammation and immunological tolerance. Therefore, 110 healthy volunteers were intravenously challenged with 1 ng/kg LPS twice: on day 0 to determine the extent of the IV (hyper)inflammatory response and on day 7 to determine the degree of IV endotoxin tolerance. Baseline EV monocyte cytokine production capacity was assessed prior to LPS administration. Short-term and long-term EV tolerance was assessed in monocytes isolated 4 h and 7 days after LPS administration, respectively. No robust correlations were observed between baseline EV cytokine production capacity and IV cytokine responses following LPS administration. However, highly robust inverse correlations were observed between IV cytokine responses and EV cytokine responses of monocytes isolated 4 h after IV LPS administration. No correlations between IV and EV tolerance were found. In conclusion, attenuated EV cytokine production capacity reflects ongoing IV inflammation rather than immune suppression. Results of EV assays should be interpreted with caution at the risk of improper use of immuno-stimulatory drugs.

7.
Crit Care ; 24(1): 688, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33302991

ABSTRACT

BACKGROUND: A subset of critically ill COVID-19 patients develop a hyperinflammatory state. Anakinra, a recombinant interleukin-1 receptor antagonist, is known to be effective in several hyperinflammatory diseases. We investigated the effects of anakinra on inflammatory parameters and clinical outcomes in critically ill, mechanically ventilated COVID-19 patients with clinical features of hyperinflammation. METHODS: In this prospective cohort study, 21 critically ill COVID-19 patients treated with anakinra were compared to a group of standard care. Serial data of clinical inflammatory parameters and concentrations of multiple circulating cytokines were determined and aligned on start day of anakinra in the treatment group, and median start day of anakinra in the control group. Analysis was performed for day - 10 to + 10 relative to alignment day. Clinical outcomes were analyzed during 28 days. Additionally, three sensitivity analyses were performed: (1) using propensity score-matched groups, (2) selecting patients who did not receive corticosteroids, and (3) using a subset of the control group aimed to match the criteria (fever, elevated ferritin) for starting anakinra treatment. RESULTS: Baseline patient characteristics and clinical parameters on ICU admission were similar between groups. As a consequence of bias by indication, plasma levels of aspartate aminotransferase (ASAT) (p = 0.0002), ferritin (p = 0.009), and temperature (p = 0.001) were significantly higher in the anakinra group on alignment day. Following treatment, no relevant differences in kinetics of circulating cytokines were observed between both groups. Decreases of clinical parameters, including temperature (p = 0.03), white blood cell counts (p = 0.02), and plasma levels of ferritin (p = 0.003), procalcitonin (p = 0.001), creatinine (p = 0.01), and bilirubin (p = 0.007), were more pronounced in the anakinra group. No differences in duration of mechanical ventilation or ICU length of stay were observed between groups. Sensitivity analyses confirmed these results. CONCLUSIONS: Anakinra is effective in reducing clinical signs of hyperinflammation in critically ill COVID-19 patients. A randomized controlled trial is warranted to draw conclusion about the effects of anakinra on clinical outcomes.


Subject(s)
COVID-19 Drug Treatment , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Receptors, Interleukin-1/antagonists & inhibitors , Aged , COVID-19/physiopathology , Cohort Studies , Critical Illness/therapy , Female , Humans , Interleukin 1 Receptor Antagonist Protein/adverse effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Male , Middle Aged , Pandemics/prevention & control , Pandemics/statistics & numerical data , Prospective Studies , Receptors, Interleukin-1/therapeutic use , Statistics, Nonparametric
9.
Lancet Rheumatol ; 2(9): e523-e524, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32838316
SELECTION OF CITATIONS
SEARCH DETAIL
...