Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16533, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019915

ABSTRACT

Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.


Subject(s)
Behavior, Animal , Larva , Light , Zebrafish , Animals , Zebrafish/physiology , Behavior, Animal/physiology , Larva/physiology , Photic Stimulation
2.
Toxics ; 10(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35622669

ABSTRACT

With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.0001-120 µM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...