Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 17(1): 9-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34854740

ABSTRACT

Aim: To investigate the effect of oral consumption of engineered mesoporous silica particles, SiPore15®, on long-term blood glucose levels and other metabolic parameters in individuals with prediabetes and newly diagnosed Type 2 diabetes. Method: An open-label, single-arm, multicenter trial was conducted in which SiPore15 was consumed three times daily for 12 weeks. Hemoglobin A1c (HbA1c, primary end point) and an array of metabolic parameters were measured at baseline and throughout the trial. Result: SiPore15 treatment significantly reduced HbA1c by a clinically meaningful degree and improved several disease-associated parameters with minimal side effects. Conclusion: The results from this study demonstrate the potential use of SiPore15 as a treatment for prediabetes that may also delay or prevent the onset of Type 2 diabetes.


Lay abstract Prediabetes is a health condition in which blood sugar levels are higher than normal but below diabetes diagnosis level. Without intervention, prediabetic adults and children are most likely to progress to Type 2 diabetes. To try and prevent this progression, the authors of this article are proposing an innovative solution with an engineered material called SiPore15®. SiPore15 is classified as a medical device, and is made up entirely of porous silica particles. It has been proven to be safe to take orally. The effects of SiPore15 were investigated in people with prediabetes and newly diagnosed Type 2 diabetes. SiPore15 was taken three times a day for 12 weeks. It significantly reduced long-term blood glucose levels and improved other factors related to the disease with minimal side effects. The results from this study show that SiPore15 has the potential to be used as a treatment for prediabetes. This may help to delay or prevent the onset of Type 2 diabetes. Clinical Trial Registration: NCT03823027 (ClinicalTrials.gov).


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Blood Glucose/metabolism , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Humans , Prediabetic State/diagnosis , Prediabetic State/drug therapy , Silicon Dioxide
2.
Adv Healthc Mater ; 9(11): e2000057, 2020 06.
Article in English | MEDLINE | ID: mdl-32352221

ABSTRACT

Engineered mesoporous silica particles (MSP) are thermally and chemically stable porous materials composed of pure silica and have attracted attention for their potential biomedical applications. Oral intake of engineered MSP is shown to reduce body weight and adipose tissue in mice. Here, clinical data from a first-in-humans study in ten healthy individuals with obesity are reported, demonstrating a reduction in glycated hemoglobin (HbA1c) and low-density lipoprotein cholesterol, which are well-established metabolic and cardiovascular risk factors. In vitro investigations demonstrate sequestration of pancreatic  α-amylase and lipase in an MSP pore-size dependent manner. Subsequent ex vivo experiments in conditions mimicking intestinal conditions and in vivo experiments in mice show a decrease in enzyme activity upon exposure to the engineered MSP, presumably by the same mechanism. Therefore, it is suggested that tailored MSP act by lowering the digestive enzyme availability in the small intestine, resulting in decreased digestion of macronutrient and leading to reduced caloric uptake. This novel MSP based mechanism-of-action, combined with its excellent safety in man, makes it a promising future agent for prevention and treatment of metabolic diseases.


Subject(s)
Obesity , Silicon Dioxide , Animals , Humans , Lipase , Mice , Porosity , Risk Factors
3.
Brain Pathol ; 28(4): 451-462, 2018 07.
Article in English | MEDLINE | ID: mdl-28557010

ABSTRACT

Deposition of amyloid-ß (Aß) is central to Alzheimer's disease (AD) pathogenesis and associated with progressive neurodegeneration in traumatic brain injury (TBI). We analyzed predisposing factors for Aß deposition including monomeric Aß40, Aß42 and Aß oligomers/protofibrils, Aß species with pronounced neurotoxic properties, following human TBI. Highly selective ELISAs were used to analyze N-terminally intact and truncated Aß40 and Aß42, as well as Aß oligomers/protofibrils, in human brain tissue, surgically resected from severe TBI patients (n = 12; mean age 49.5 ± 19 years) due to life-threatening brain swelling/hemorrhage within one week post-injury. The TBI tissues were compared to post-mortem AD brains (n = 5), to post-mortem tissue of neurologically intact (NI) subjects (n = 4) and to cortical biopsies obtained at surgery for idiopathic normal pressure hydrocephalus patients (iNPH; n = 4). The levels of Aß40 and Aß42 were not elevated by TBI. The levels of Aß oligomers/protofibrils in TBI were similar to those in the significantly older AD patients and increased compared to NI and iNPH controls (P < 0.05). Moreover, TBI patients carrying the AD risk genotype Apolipoprotein E epsilon3/4 (APOE ε3/4; n = 4) had increased levels of Aß oligomers/protofibrils (P < 0.05) and of both N-terminally intact and truncated Aß42 (P < 0.05) compared to APOE ε3/4-negative TBI patients (n = 8). Neuropathological analysis showed insoluble Aß aggregates (commonly referred to as Aß plaques) in three TBI patients, all of whom were APOE ε3/4 carriers. We conclude that soluble intermediary Aß aggregates form rapidly after TBI, especially among APOE ε3/4 carriers. Further research is needed to determine whether these aggregates aggravate the clinical short- and long-term outcome in TBI.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain/metabolism , Brain/pathology , Adult , Aged , Aged, 80 and over , Amyloid/metabolism , Apolipoproteins E/genetics , Female , Humans , Male , Middle Aged , Young Adult
4.
J Alzheimers Dis ; 43(2): 575-88, 2015.
Article in English | MEDLINE | ID: mdl-25096615

ABSTRACT

Amyloid-ß (Aß) immunotherapy for Alzheimer's disease (AD) has good preclinical support from transgenic mouse models and clinical data suggesting that a long-term treatment effect is possible. Soluble Aß protofibrils have been shown to exhibit neurotoxicity in vitro and in vivo, and constitute an attractive target for immunotherapy. Here, we demonstrate that the humanized antibody BAN2401 and its murine version mAb158 exhibit a strong binding preference for Aß protofibrils over Aß monomers. Further, we confirm the presence of the target by showing that both antibodies efficiently immunoprecipitate soluble Aß aggregates in human AD brain extracts. mAb158 reached the brain and reduced the brain protofibril levels by 42% in an exposure-dependent manner both after long-term and short-term treatment in tg-ArcSwe mice. Notably, a 53% reduction of protofibrils/oligomers in cerebrospinal fluid (CSF) that correlated with reduced brain protofibril levels was observed after long-term treatment, suggesting that CSF protofibrils/oligomers could be used as a potential biomarker. No change in native monomeric Aß42 could be observed in brain TBS extracts after mAb158-treatment in tg-ArcSwe mice. By confirming the specific ability of mAb158 to selectively bind and reduce soluble Aß protofibrils, with minimal binding to Aß monomers, we provide further support in favor of its position as an attractive new candidate for AD immunotherapy. BAN2401 has undergone full phase 1 development, and available data indicate a favorable safety profile in AD patients.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal/therapeutic use , Brain/metabolism , Immunologic Factors/therapeutic use , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Antibodies, Monoclonal/pharmacology , Brain/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Humans , Immunologic Factors/pharmacology , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid , Presenilin-1/genetics , Protein Binding/drug effects , Protein Binding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...