Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 16(2): 203-215, 2018 03.
Article in English | MEDLINE | ID: mdl-29318763

ABSTRACT

Stromatolites are cited as some of the earliest evidence for life on Earth, but problems remain in reconciling the paucity of microfossils in ancient carbonate examples with the abundance of microbes that help construct modern analogues. Here, we trace the mineralisation pathway of filamentous cyanobacteria within stromatolites from Lake Thetis, Western Australia, providing new insights into microfossil preservation in carbonate stromatolites. Lake Thetis cyanobacteria exhibit a spectrum of mineralisation processes that include early precipitation of Mg-silicates, largely controlled by the morphochemical features of the cyanobacteria, followed by aragonite formation that is inferred to be driven by heterotrophic activity. Fossilised cyanobacteria with high-quality morphological preservation are characterised by a significant volume of authigenic Mg-silicates, which have preferentially nucleated in/on extracellular organic material and on cell walls, and now replicate the region once occupied by the cyanobacterial sheath. In such specimens, aragonite is restricted to the outer sheath margin and parts of the cell interior. Cyanobacteria that display more significant degradation appear to possess a higher ratio of aragonite to Mg-silicate. In these specimens, aragonite forms micronodules in the sheath zone and is spatially associated with the inferred remains of heterotrophic bacteria. Aragonite also occurs as an advancing front from the outer margin of the sheath where it is commonly intergrown with Mg-silicates. Where there is no evidence of Mg-silicates within filaments, the fidelity of microfossil preservation is poor. In these cases, individual filaments may no longer be visible under light microscopy, and little organic material remains, but filament traces remain detectable using electron microscopy due to variations in aragonite texture. These data provide further evidence that authigenic silicate minerals play a crucial role in the fossilisation of micro-organisms; in their absence, carbonate crystal growth potentially mediated by heterotrophic microbial decay may largely obliterate morphological evidence for life within stromatolites, although mineralogical traces may still be detectable using electron microscopy.


Subject(s)
Cyanobacteria/chemistry , Cyanobacteria/metabolism , Lakes/microbiology , Minerals/metabolism , Carbonates/metabolism , Fossils , Heterotrophic Processes , Western Australia
2.
Geobiology ; 14(5): 440-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27185586

ABSTRACT

Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine-grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878-Ma Gunflint Formation, at Current River, Ontario. The AITs are 1-15 µm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite- and chlorite-rich laminae and chert-filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data ((34) S/(32) S) obtained in situ from AIT pyrite have a δ(34) S of -8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ(34) S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate-reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2 S were partially trapped within the microbial mat, helping produce birds-eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low-grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2 , and potentially CH4 , as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that potentially led to enhanced quartz solubility, plus increases in fluid and/or gas pressure during chlorite formation, with chlorite then infilling the AITs. This latter mechanism is novel and represents a possible way to generate AITs in environments lacking organic material.


Subject(s)
Bacteria/metabolism , Fossils , Geologic Sediments/chemistry , Elements , Microscopy , Ontario , Rivers , Spectrometry, X-Ray Emission
3.
Geobiology ; 8(5): 403-16, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20597990

ABSTRACT

We here show that nano-scale mapping of elements commonly utilized in biological cycles provides a promising new additional line of evidence when evaluating the extent of the contribution of biology to microbialites. Our case study comes from Lake Clifton in Western Australia, a unique environment where living domical and conical microbialites occur in close proximity to ≤ 4000-year-old fossilized equivalents. The outer margins of a partially lithified, actively growing Lake Clifton microbialite are characterized by abundant filamentous cyanobacteria within a loosely cemented aragonite matrix. Nano-scale chemical maps have been successfully matched to specific morphological features such as trichomes, sheaths and putative extracellular polymeric substances (EPS). A suite of elements (C, O, Mg, N, Si, S) is concentrated within cyanobacterial sheaths, with carbon, magnesium, nitrogen and sulfur also enriched within trichomes and putative EPS. Calcium distribution highlights the sites of aragonite mineralization. In contrast, the fossilized Lake Clifton microbialite contains only rare, extensively degraded cyanobacterial filaments, the mean diameter of which is <50% of the living equivalents. Nevertheless, nano-scale chemical maps can again be matched with morphological features. Here, poorly preserved filamentous microfossils are highlighted by enrichments in nitrogen and sulfur. Magnesium is no longer concentrated within the filaments, instead it co-occurs with calcium and oxygen in the calcite cement. Extension of this study to a ~2720-million-year-old stromatolitic microbialite from the Tumbiana Formation of Western Australia shows that similar nano-scale signals, in particular nitrogen and sulfur enrichments, are characteristic of stromatolite laminations, even when morphological microfossils are absent. The close similarities of nano-scale elemental distributions in organic material from modern and ancient microbialites show that this technique provides a valuable addition to the morphological investigation of such structures, particularly in non-fossiliferous ancient examples.


Subject(s)
Cyanobacteria/ultrastructure , Fossils , Fresh Water/microbiology , Geologic Sediments/microbiology , Nanotechnology/methods , Spectrometry, Mass, Secondary Ion/methods , Cyanobacteria/chemistry , Cyanobacteria/growth & development , Fresh Water/chemistry , Geologic Sediments/chemistry , Nanostructures/analysis , Nanostructures/ultrastructure , Spectrometry, Mass, Secondary Ion/instrumentation , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...