Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 730: 139175, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32388384

ABSTRACT

Iodine plays an important role in the environment and life. In the atmosphere, iodine is present in the form of inorganic and organic compounds. In this study, we have analyzed atmospheric wet precipitation using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) for the presence of organoiodine compounds and found that the main organoiodine compound in atmospheric waters is 2-iodomalondialdehyde. The structure of this compound is supported by independent synthesis. A plausible mechanism of the formation of 2-iodomalondialdehyde from acrolein, iodine and water in the atmosphere is proposed. Our measurements reveal the presence of ten other organoiodine compounds in atmospheric wet precipitation but their structures remain unknown, mainly due to very low concentrations prohibiting mass spectrometry studies. The results described in this paper enhance our knowledge about the circulation of iodine in nature. It provides insights into the chemical nature of soluble organic iodine, whose presence in the atmosphere has been known for two decades. In addition, it also shows the potential of using liquid chromatography coupled to mass spectrometry (LC-MS) technique to further explore iodine chemistry in the atmosphere.

2.
Chemosphere ; 251: 126439, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32443254

ABSTRACT

The molecular characterization of secondary organic aerosol (SOA) is based mainly on LC-MS analyses of particulate matter (PM) samples collected with aerosol samplers. Several studies have analyzed atmospheric waters, including rain and cloud water, for the presence of SOA components, however, no separation techniques were used making identification of the individual components in these complex mixtures impossible. We have applied our improved UHPLC-HR-MS methodology to analyze atmospheric precipitates (hailstone, rain and snow), as well as SOA collected with high-volume samplers. We achieved sensitivity levels and separation efficiencies that were sufficient for molecular-level identification of individual compounds. Tracing commonly known SOA markers such as organosulfates (OS), C4-C6 dicarboxylic acids and terpenoic acids revealed that the chromatographic profiles for both atmospheric precipitate and PM samples were very similar, with both giving similar component ratios, especially for OS. We also demonstrated that SOA markers can be detected directly from raw rain samples. Our results show that LC-MS techniques are suitable for the convenient analysis of atmospheric precipitates containing SOA markers at the molecular level. It complements traditional SOA analyses and provides additional sampling opportunities which will no doubt allow for better elucidation of chemical transformations of volatile organic compounds in the atmosphere.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Atmosphere/chemistry , Chromatography, Liquid , Mass Spectrometry , Particulate Matter/analysis , Rain , Snow , Volatile Organic Compounds/analysis , Weather
3.
Environ Sci Technol ; 54(3): 1415-1424, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31917550

ABSTRACT

Isoprene (C5H8) is the main non-methane hydrocarbon emitted into the global atmosphere. Despite intense research, atmospheric transformations of isoprene leading to secondary organic aerosol (SOA) are still not fully understood, including its multiphase chemical reactions. Herein, we report on the detailed structural characterization of atmospherically relevant isoprene-derived organosulfates (OSs) with a molecular weight (MW) of 212 (C5H8SO7), which are abundantly present in both ambient fine aerosol (PM2.5) and laboratory-generated isoprene SOA. The results obtained from smog chamber-generated isoprene SOA and aqueous-phase laboratory experiments coupled to the S(IV)-autooxidation chemistry of isoprene, 3-methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone, allowed us for the first time to fully elucidate the isomeric structures of the MW 212 OSs. By applying liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry, we firmly confirmed six positional isomers of the MW 212 OSs in PM2.5 collected from different sites in Europe and the United States. Our results also show that despite the low solubility of isoprene in water, aqueous-phase or multiphase chemistry can play an important role in the formation of OSs from isoprene. Possible formation mechanisms for the MW 212 OSs are also tentatively proposed.


Subject(s)
Hemiterpenes , Aerosols , Butadienes , Europe , Lactones , Molecular Weight , Pentanes
4.
Chemosphere ; 214: 1-9, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30248553

ABSTRACT

In-cloud processing of volatile organic compounds is one of the significant routes leading to secondary organic aerosol (SOA) in the lower troposphere. In this study, we demonstrate that two atmospherically relevant α,ß-unsaturated carbonyls, i.e., but-3-en-2-on (methyl vinyl ketone, MVK) and 2-methylopropenal (methacrolein, MACR), undergo sulfate radical-induced transformations in dilute aqueous systems under photochemical conditions to form organosulfates previously identified in ambient aerosols and SOA generated in smog chambers. The photooxidation was performed under sun irradiation in unbuffered aqueous solutions containing carbonyl precursors at a concentration of 0.2 mmol and peroxydisulfate as a source of sulfate radicals (SO4-) at a concentration of 0.95 mmol. UV-vis analysis of solutions showed the fast decay of unsaturated carbonyl precursors in the presence of sulfate radicals. The observation confirms the capacity of sulfate radicals to transform the organic compounds into SOA components in atmospheric waters. Detailed interpretation of high-resolution negative ion electrospray ionization tandem mass spectra allowed to assign molecular structures to multiple aqueous organosulfate products, including an abundant isoprene-derived organosulfate C4H8SO7 detected at m/z 199. The results highlight the solar aqueous-phase reactions as a potentially significant route for biogenic SOA production in clouds at locations where isoprene oxidation occurs. A recent modelling study suggests that such processes could likely contribute to 20-30 Tg year-1 production of SOA, referred to as aqSOA, which is a non-negligible addition to the still underestimated budget of atmospheric aerosol.


Subject(s)
Acrolein/analogs & derivatives , Air Pollutants/chemistry , Butanones/chemistry , Water/chemistry , Acrolein/chemistry , Air Pollutants/analysis , Oxidation-Reduction , Water/analysis
5.
Anal Chem ; 90(5): 3416-3423, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29429345

ABSTRACT

Secondary organic aerosol (SOA) is an important yet not fully characterized constituent of atmospheric particulate matter. A number of different techniques and chromatographic methods are currently used for the analysis of SOA, so the comparison of results from different laboratories poses a challenge. So far, tentative structures have been suggested for many organosulfur compounds that have been identified as markers for the formation of SOA, including isoprene-derived organosulfates. Despite the effectiveness and robustness of LC-MS/MS analyses, the structural profiling of positional isomers of recently discovered organosulfates with molecular weights (MWs) of 214 and 212 from isoprene was entirely unsuccessful. Here, we developed a UHPLC combined with high-resolution tandem mass spectrometric method that significantly improves the separation efficiency and detection sensitivity of these compounds in aerosol matrices. We discovered that selection of the proper solvent for SOA extracts was a key factor in improving the separation parameters. Later, we took advantage of the enhanced sensitivity, combined with a short scan time window, to perform detailed structural mass-spectrometric studies. For the first time, we elucidate a number of isomers of the MW 214 and the MW 212 organosulfates and provide strong evidence for their molecular structures. The structure of trihydroxyketone sulfate MW 214 that we propose has not been previously reported. The methods we designed can be easily applied in other laboratories to foster an easy comparison of related qualitative and quantitative data obtained throughout the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...