Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(14): 4246-4252, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37399236

ABSTRACT

CHARMM is one of the most widely used biomolecular force fields. Although developed in close connection with a dedicated molecular simulation engine of the same name, it is also usable with other codes. GROMACS is a well-established, highly optimized, and multipurpose software for molecular dynamics, versatile enough to accommodate many different force field potential functions and the associated algorithms. Due to conceptional differences related to software design and the large amount of numeric data inherent to residue topologies and parameter sets, conversion from one software format to another is not straightforward. Here, we present an automated and validated means to port the CHARMM force field to a format read by the GROMACS engine, harmonizing the different capabilities of the two codes in a self-documenting and reproducible way with a bare minimum of user interaction required. Being based entirely on the upstream data files, the presented approach does not involve any hard-coded data, in contrast with previous attempts to solve the same problem. The heuristic approach used for perceiving the local internal geometry is directly applicable for analogous transformations of other force fields.


Subject(s)
Molecular Dynamics Simulation , Software , Algorithms
2.
Cells ; 10(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34572012

ABSTRACT

In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.


Subject(s)
Lipids/genetics , Thylakoids/genetics , Circular Dichroism/methods , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron/methods , Photosynthesis/genetics
3.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809075

ABSTRACT

A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12-1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60-80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0-90%), and their λem peaks were blue shifted.

SELECTION OF CITATIONS
SEARCH DETAIL
...