Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Plant Pathol ; 65(6): 987-996, 2016 08.
Article in English | MEDLINE | ID: mdl-27587900

ABSTRACT

The threat from pests and pathogens to native and commercially planted forest trees is unprecedented and expected to increase under climate change. The degree to which forests respond to threats from pathogens depends on their adaptive capacity, which is determined largely by genetically controlled variation in susceptibility of the individual trees within them and the heritability and evolvability of this trait. The most significant current threat to the economically and ecologically important species Scots pine (Pinus sylvestris) is dothistroma needle blight (DNB), caused by the foliar pathogen Dothistroma septosporum. A progeny-population trial of 4-year-old Scots pine trees, comprising six populations from native Caledonian pinewoods each with three to five families in seven blocks, was artificially inoculated using a single isolate of D. septosporum. Susceptibility to D. septosporum, assessed as the percentage of non-green needles, was measured regularly over a period of 61 days following inoculation, during which plants were maintained in conditions ideal for DNB development (warm; high humidity; high leaf wetness). There were significant differences in susceptibility to D. septosporum among families indicating that variation in this trait is heritable, with high estimates of narrow-sense heritability (0.38-0.75) and evolvability (genetic coefficient of variation, 23.47). It is concluded that native Scots pine populations contain sufficient genetic diversity to evolve lower susceptibility to D. septosporum through natural selection in response to increased prevalence of this pathogen.

2.
Heredity (Edinb) ; 106(5): 775-87, 2011 May.
Article in English | MEDLINE | ID: mdl-20823905

ABSTRACT

Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θ(sil)= ~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=-0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (π(tot)=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4N(e) generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role.


Subject(s)
Demography , Genetic Variation , Genetics, Population , Pinus sylvestris/genetics , Base Sequence , Computer Simulation , Gene Frequency , Geography , Linkage Disequilibrium , Molecular Sequence Data , Polymorphism, Genetic , Scotland , Sequence Analysis, DNA
3.
J Appl Genet ; 50(4): 329-39, 2009.
Article in English | MEDLINE | ID: mdl-19875883

ABSTRACT

Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies for P. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure of P. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations of Pinus mugo, ten of Pinus sylvestris and one of Pinus uncinata. The level of genetic variability of P. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related to P. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations of P. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations including locus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (DN = 0.002) and small genetic differentiation (GST = 0.003) were found between P. uliginosa and P. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from two P. uliginosa stands from Low Silesian Pinewood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105, F = 0.081). The results are discussed in the context of evolution of P. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.


Subject(s)
Pinus/genetics , Ecosystem , Endangered Species , Gene Flow , Genetics, Population , Inbreeding , Isoenzymes/genetics , Pinus/classification , Pinus/enzymology , Pinus sylvestris/enzymology , Pinus sylvestris/genetics , Poland , Species Specificity
4.
Mol Biol Evol ; 26(4): 893-905, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168564

ABSTRACT

In this study, we investigate natural selection in a pine phylogeny. DNA sequences from 18 nuclear genes were used to construct a very well-supported species tree including 10 pine species. This tree is in complete agreement with a previously reported supertree constructed from morphological and molecular data, but there are discrepancies with previous chloroplast phylogenies within the section Pinus. A significant difference in evolutionary rate between Picea and Pinus was found, which could potentially indicate a lower mutation rate in Picea, but other scenarios are also possible. Several approaches were used to study selection patterns in a set of 21 nuclear genes in pines and in some cases in Picea and Pseudotsuga. The overall pattern suggests efficient purifying selection resulting in low branch-specific d(n)/d(s) ratios with an average of 0.22, which is similar to other higher plants. Evidence for purifying selection was common and found on at least 55% of the branches. Evidence of positive selection at several sites was found in a phytocyanin homolog and significant differences in d(n)/d(s) among the branches in the gene tree in dehydrin 1. Several genes suitable for further phylogenetic analysis at various levels of divergence were identified.


Subject(s)
Cell Nucleus/genetics , Pinus/genetics , Selection, Genetic , Evolution, Molecular , Phylogeny , Pinus/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...