Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(1): 101940, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33426511

ABSTRACT

Rab GTPases are central regulators of intracellular vesicular trafficking. They are frequently targeted by bacterial pathogens through post-translational modifications. Salmonella typhimurium secretes the cysteine protease GtgE during infection, leading to a regioselective proteolytic cleavage of the regulatory switch I loop in the small GTPases of the Rab32 subfamily. Here, using a combination of biochemical methods, molecular dynamics simulations, NMR spectroscopy, and single-pair Förster resonance energy transfer, we demonstrate that the cleavage of Rab32 causes a local increase of conformational flexibility in both switch regions. Cleaved Rab32 maintains its ability to interact with the GDP dissociation inhibitor (GDI). Interestingly, the Rab32 cleavage enables GDI binding also with an active GTP-bound Rab32 in vitro. Furthermore, the Rab32 proteolysis provokes disturbance in the interaction with its downstream effector VARP. Thus, the proteolysis of Rab32 is not a globally degradative mechanism but affects various biochemical and structural properties of the GTPase in a diverse manner.

2.
Nat Commun ; 9(1): 44, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29298974

ABSTRACT

Salmonella infections require the delivery of bacterial effectors into the host cell that alter the regulation of host defense mechanisms. The secreted cysteine protease GtgE from S. Typhimurium manipulates vesicular trafficking by modifying the Rab32 subfamily via cleaving the regulatory switch I region. Here we present a comprehensive biochemical, structural, and computational characterization of GtgE in complex with Rab32. Interestingly, GtgE solely processes the inactive GDP-bound GTPase. The crystal structure of the Rab32:GDP substrate in complex with the inactive mutant GtgEC45A reveals the molecular basis of substrate recognition. In combination with atomistic molecular dynamics simulations, the structural determinants for protein and activity-state specificity are identified. Mutations in a central interaction hub lead to loss of the strict GDP specificity. Our findings shed light on the sequence of host cell manipulation events during Salmonella infection and provide an explanation for the dependence on the co-secreted GTPase activating protein SopD2.


Subject(s)
Bacterial Proteins/metabolism , Cysteine Proteases/metabolism , Salmonella enterica/enzymology , rab GTP-Binding Proteins/metabolism , Molecular Dynamics Simulation , Protein Conformation
3.
Angew Chem Int Ed Engl ; 53(38): 10105-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25081643

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are multifunctional enzymes that produce a wide array of bioactive peptides. Here we show that a single tryptophan-to-serine mutation in phenylalanine-specific NRPS adenylation domains enables the efficient activation of non-natural aromatic amino acids functionalized with azide and alkyne groups. The resulting 10(5)-fold switch in substrate specificity was achieved without appreciable loss of catalytic efficiency. Moreover, the effective communication of the modified A domains with downstream modules in dipeptide synthetases permitted incorporation of O-propargyl-L-tyrosine into diketopiperazines both in vitro and in vivo, even in the presence of competing phenylalanine. Because azides and alkynes readily undergo bioorthogonal click reactions, reprogramming NRPSs to accept non-natural amino acids that contain these groups provides a potentially powerful means of isolating, labeling, and modifying biologically active peptides.


Subject(s)
Amino Acids/metabolism , Click Chemistry , Peptide Synthases/metabolism , Alkynes/chemistry , Alkynes/metabolism , Amino Acids/chemistry , Azides/chemistry , Azides/metabolism , Models, Molecular , Molecular Structure , Peptide Synthases/chemistry , Peptide Synthases/genetics
4.
Proc Natl Acad Sci U S A ; 110(28): 11302-7, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23798410

ABSTRACT

Caseinolytic proteases (ClpPs) are large oligomeric protein complexes that contribute to cell homeostasis as well as virulence regulation in bacteria. Although most organisms possess a single ClpP protein, some organisms encode two or more ClpP isoforms. Here, we elucidated the crystal structures of ClpP1 and ClpP2 from pathogenic Listeria monocytogenes and observe an unprecedented regulation principle by the catalytic triad. Whereas L. monocytogenes (Lm)ClpP2 is both structurally and functionally similar to previously studied tetradecameric ClpP proteins from Escherichia coli and Staphylococcus aureus, heptameric LmClpP1 features an asparagine in its catalytic triad. Mutation of this asparagine to aspartate increased the reactivity of the active site and led to the assembly of a tetradecameric complex. We analyzed the heterooligomeric complex of LmClpP1 and LmClpP2 via coexpression and subsequent labeling studies with natural product-derived probes. Notably, the LmClpP1 peptidase activity is stimulated 75-fold in the complex providing insights into heterooligomerization as a regulatory mechanism. Collectively, our data point toward different preferences for substrates and inhibitors of the two ClpP enzymes and highlight their structural and functional characteristics.


Subject(s)
Caseins/metabolism , Peptide Hydrolases/metabolism , Amino Acid Sequence , Catalysis , Models, Molecular , Molecular Sequence Data , Peptide Hydrolases/chemistry , Proteolysis , Sequence Homology, Amino Acid
5.
J Am Chem Soc ; 133(23): 8927-33, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21534574

ABSTRACT

The 41-amino acid peptide corticotropin releasing factor (CRF) is a major modulator of the mammalian stress response. Upon stressful stimuli, it binds to the corticotropin releasing factor receptor 1 (CRF(1)R), a typical member of the class-B G-protein-coupled receptors (GPCRs) and a prime target in the treatment of mood disorders. To chemically probe the molecular interaction of CRF with the transmembrane domain of its cognate receptor, we developed a high-throughput conjugation approach that mimics the natural activation mechanism of class-B GPCRs. An acetylene-tagged peptide library was synthesized and conjugated to an azide-modified high-affinity carrier peptide derived from the CRF C-terminus using copper-catalyzed dipolar cycloaddition. The resulting conjugates reconstituted potent agonists and were tested in situ for activation of the CRF(1) receptor in a cell-based assay. By use of this approach we (i) defined the minimal sequence motif that is required for full receptor activation, (ii) identified the critical functional groups and structure-activity relationships, (iii) developed an optimized, highly modified peptide probe with high potency (EC(50) = 4 nM) that is specific for the activation domain of the receptor, and (iv) probed the behavioral role of CRF receptors in living mice. The membrane recruitment by a high-affinity carrier enhanced the potency of the tethered peptides by >4 orders of magnitude and thus allowed the testing of very weak initial fragments that otherwise would have been inactive on their own. As no chromatography purification of the test peptides was necessary, a substantial increase in screening throughput was achieved. Importantly, the peptide conjugates can be used to probe the endogenous receptor in its native environment in vivo.


Subject(s)
Biomimetics/methods , Drug Evaluation, Preclinical/methods , Receptors, Corticotropin-Releasing Hormone/agonists , Receptors, Corticotropin-Releasing Hormone/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Membrane/metabolism , Click Chemistry , Corticotropin-Releasing Hormone/chemistry , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Ligands , Mice , Protein Structure, Tertiary , Receptors, Corticotropin-Releasing Hormone/chemistry , Structure-Activity Relationship , Urocortins/chemistry , Urocortins/metabolism , Urocortins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...