Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 217: 121041, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32498895

ABSTRACT

A simple, accurate, and environmentally friendly method for the simultaneous determination of the analog endocrine disruptors bisphenol S (BPS) and bisphenol A (BPA) was developed and validated. The determination was performed by square-wave voltammetry using a cathodically pretreated boron-doped diamond (BDD) as the working electrode, with 0.1 mol L-1 H2SO4 as the supporting electrolyte. Under optimized conditions, a wide linear working range (R2 = 0.999) from 0.20 to 80.0 mg L-1 with a limit of detection (S/N = 3) of 0.060 mg L-1 was attained for BPS. For BPA, a linear correlation (R2 = 0.992) was attained from 0.10 to 50.0 mg L-1, with a limit of detection of 0.030 mg L-1. As far as we could ascertain, these are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BPS and BPA in real water samples, with minimum sample preparation processes (dilution and acidification only). Excellent recovery values were achieved, ranging from 95 to 99%. Additionally, the method was successfully applied to the monitoring of the electrochemical degradation (anodic oxidation) of BPS using a recirculating flow system fitted with a BDD anode. The decay of [BPS] with time was also checked by an HPLC method, with results statistically similar to those obtained by the proposed electroanalytical method. Hence, the proposed method is a reliable, greener, and low-cost alternative to monitor simultaneously BPS and BPA in aquatic matrices or only BPS in wastewater treatment processes.

2.
Chemosphere ; 234: 461-470, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31228848

ABSTRACT

The performances of distinct BDD anodes (boron doping of 100, 500 and 2500 ppm, with sp3/sp2 carbon ratios of 215, 325, and 284, respectively) in the electrochemical degradation of ciprofloxacin - CIP (0.5 L of 50 mg L-1 in 0.10 M Na2SO4, at 25 °C) were comparatively assessed using a recirculating flow system with a filter-press reactor. Performance was assessed by monitoring the CIP and total organic carbon (TOC) concentrations, oxidation intermediates, and antimicrobial activity against Escherichia coli as a function of electrolysis time. CIP removal was strongly affected by the solution pH (kept fixed), flow conditions, and current density; similar trends were obtained independently of the BDD anode used, but the BDD100 anode yielded the best results. Enhanced mass transport was achieved at a low flow rate by promoting the solution turbulence within the reactor. The fastest complete CIP removal (within 20 min) was attained at j = 30 mA cm-2, pH = 10.0, and qV = 2.5 L min-1 + bypass turbulence promotion. TOC removal was practically accomplished only after 10 h of electrolysis, with quite similar performances by the distinct BDD anodes. Five initial oxidation intermediates were identified (263 ≤ m/z ≤ 348), whereas only two terminal oxidation intermediates were detected (oxamic and formic acids). The antimicrobial activity of the electrolyzed CIP solution was almost completely removed within 10 h of electrolysis. The characteristics of the BDD anodes only had a marked effect on the CIP removal rate (best performance by the least-doped anode), contrasting with other data in the literature.


Subject(s)
Ciprofloxacin/chemistry , Electrolysis/methods , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Boron , Carbon/analysis , Carbon/chemistry , Ciprofloxacin/analysis , Diamond , Electrodes , Escherichia coli/drug effects , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 26(5): 4438-4449, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29876851

ABSTRACT

The electrochemical degradation of ciprofloxacin-CIP (50 mg L-1 in 0.10 mol L-1 Na2SO4) was investigated using a double-sided Ti-Pt/ß-PbO2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, qV = 6.5 L min-1, j = 30 mA cm-2, and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/ß-PbO2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/ß-PbO2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.


Subject(s)
Anti-Bacterial Agents/analysis , Ciprofloxacin/analysis , Electrochemical Techniques/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Anti-Bacterial Agents/toxicity , Ciprofloxacin/toxicity , Electrochemical Techniques/instrumentation , Electrodes , Escherichia coli/drug effects , Kinetics , Models, Theoretical , Oxidation-Reduction , Water Pollutants, Chemical/toxicity , Water Purification/instrumentation
4.
ACS Appl Mater Interfaces ; 8(42): 28325-28337, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27243949

ABSTRACT

The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...