Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Vision Res ; 220: 108406, 2024 07.
Article in English | MEDLINE | ID: mdl-38626536

ABSTRACT

Incorporating statistical characteristics of stimuli in perceptual processing can be highly beneficial for reliable estimation from noisy sensory measurements but may generate perceptual bias. According to Bayesian inference, perceptual biases arise from the integration of internal priors with noisy sensory inputs. In this study, we used a Bayesian observer model to derive biases and priors in hue perception based on discrimination data for hue ensembles with varying levels of chromatic noise. Our results showed that discrimination thresholds for isoluminant stimuli with hue defined by azimuth angle in cone-opponent color space exhibited a bimodal pattern, with lowest thresholds near a non-cardinal blue-yellow axis that aligns closely with the variation of natural daylights. Perceptual biases showed zero crossings around this axis, indicating repulsion away from yellow and attraction towards blue. These biases could be explained by the Bayesian observer model through a non-uniform prior with a preference for blue. Our findings suggest that visual processing takes advantage of knowledge of the distribution of colors in natural environments for hue perception.


Subject(s)
Bayes Theorem , Color Perception , Sensory Thresholds , Humans , Color Perception/physiology , Sensory Thresholds/physiology , Photic Stimulation/methods , Discrimination, Psychological/physiology , Adult , Female , Male , Young Adult
2.
Sci Rep ; 13(1): 18624, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903860

ABSTRACT

How we perceive a visual stimulus can be influenced by its surrounding context. For example, the presence of a reference skews the perception of a similar feature in a stimulus, a phenomenon called reference repulsion. Ongoing research so far remains inconclusive regarding the stage of visual information processing where such repulsion occurs. We examined the influence of a reference on late visual processing. We measured the repulsion effect caused by an orientation reference presented after an orientation ensemble stimulus. The participants' reported orientations were significantly biased away from the post-stimulus reference, displaying typical characteristics of reference repulsion. Moreover, explicit discrimination choices between the reference and the stimulus influenced the magnitudes of repulsion effects, which can be explained by an encoding-decoding model that differentiates the re-weighting of sensory representations in implicit and explicit processes. These results support the notion that reference repulsion may arise at a late decision-related stage of visual processing, where different sensory decoding strategies are employed depending on the specific task.


Subject(s)
Cognition , Visual Perception , Humans , Bias , Photic Stimulation
3.
Sci Data ; 10(1): 357, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277500

ABSTRACT

Sharing of data, processing tools, and workflows require open data hosting services and management tools. Despite FAIR guidelines and the increasing demand from funding agencies and publishers, only a few animal studies share all experimental data and processing tools. We present a step-by-step protocol to perform version control and remote collaboration for large multimodal datasets. A data management plan was introduced to ensure data security in addition to a homogeneous file and folder structure. Changes to the data were automatically tracked using DataLad and all data was shared on the research data platform GIN. This simple and cost-effective workflow facilitates the adoption of FAIR data logistics and processing workflows by making the raw and processed data available and providing the technical infrastructure to independently reproduce the data processing steps. It enables the community to collect heterogeneously acquired and stored datasets not limited to a specific category of data and serves as a technical infrastructure blueprint with rich potential to improve data handling at other sites and extend to other research areas.


Subject(s)
Animal Experimentation , Datasets as Topic , Animals , Workflow
4.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36750361

ABSTRACT

Science is changing: the volume and complexity of data are increasing, the number of studies is growing and the goal of achieving reproducible results requires new solutions for scientific data management. In the field of neuroscience, the German National Research Data Infrastructure (NFDI-Neuro) initiative aims to develop sustainable solutions for research data management (RDM). To obtain an understanding of the present RDM situation in the neuroscience community, NFDI-Neuro conducted a comprehensive survey among the neuroscience community. Here, we report and analyze the results of the survey. We focused the survey and our analysis on current needs, challenges, and opinions about RDM. The German neuroscience community perceives barriers with respect to RDM and data sharing mainly linked to (1) lack of data and metadata standards, (2) lack of community adopted provenance tracking methods, (3) lack of secure and privacy preserving research infrastructure for sensitive data, (4) lack of RDM literacy, and (5) lack of resources (time, personnel, money) for proper RDM. However, an overwhelming majority of community members (91%) indicated that they would be willing to share their data with other researchers and are interested to increase their RDM skills. Taking advantage of this willingness and overcoming the existing barriers requires the systematic development of standards, tools, and infrastructure, the provision of training, education, and support, as well as additional resources for RDM to the research community and a constant dialogue with relevant stakeholders including policy makers to leverage of a culture change through adapted incentivization and regulation.


Subject(s)
Biomedical Research , Neurosciences , Data Management , Surveys and Questionnaires , Information Dissemination
6.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Article in English | MEDLINE | ID: mdl-33506383

ABSTRACT

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Subject(s)
Neurosciences , Reproducibility of Results
8.
Front Neurosci ; 15: 685590, 2021.
Article in English | MEDLINE | ID: mdl-34354560

ABSTRACT

Objective: We are still lacking a pathophysiological mechanism for functional disorders explaining the emergence and manifestation of characteristic, severely impairing bodily symptoms like chest pain or dizziness. A recent hypothesis based on the predictive coding theory of brain function suggests that in functional disorders, internal expectations do not match the actual sensory body states, leading to perceptual dysregulation and symptom perception. To test this hypothesis, we investigated the account of internal expectations and sensory input on gaze stabilization, a physiologically relevant parameter of gaze shifts, in functional dizziness. Methods: We assessed gaze stabilization in eight functional dizziness patients and 11 healthy controls during two distinct epochs of large gaze shifts: during a counter-rotation epoch (CR epoch), where the brain can use internal models, motor planning, and resulting internal expectations to achieve internally driven gaze stabilization; and during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no movement expectations are present, and gaze is stabilized by sensory input alone. Results: Gaze stabilization differed between functional patients and healthy controls only when internal movement expectations were involved [F(1,17) = 14.63, p = 0.001, and partial η2 = 0.463]: functional dizziness patients showed reduced gaze stabilization during the CR (p = 0.036) but not OSC epoch (p = 0.26). Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well-measurable deficits in internally-driven gaze stabilization in functional dizziness pointing at internal expectations that do not match actual body states. This experimental evidence supports the perceptual dysregulation hypothesis of functional disorders and is an important step toward understanding the underlying pathophysiology.

9.
Biol Cybern ; 115(2): 161-176, 2021 04.
Article in English | MEDLINE | ID: mdl-33787967

ABSTRACT

In studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogeneous illumination of their visual field. The purpose of this information remains unclear. Here, we propose a mechanism that detects feature homogeneity in visual areas, based on latency coding and spike time coincidence, in a purely feed-forward and therefore rapid manner. We demonstrate how homogeneity information can interact with information on contrast edges to potentially support rapid image segmentation. Furthermore, we analyze how neuronal crosstalk (noise) affects the mechanism's performance. We show that the detrimental effects of crosstalk can be partly mitigated through delayed feed-forward inhibition that shapes bi-phasic post-synaptic events. The delay of the feed-forward inhibition allows effectively controlling the size of the temporal integration window and, thereby, the coincidence threshold. The proposed model is based on single-spike latency codes in a purely feed-forward architecture that supports low-latency processing, making it an attractive scheme of computation in spiking neuronal networks where rapid responses and low spike counts are desired.


Subject(s)
Neurons , Action Potentials , Animals , Photic Stimulation
10.
Front Neuroinform ; 13: 62, 2019.
Article in English | MEDLINE | ID: mdl-31611781

ABSTRACT

An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format.

11.
Insects ; 10(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614450

ABSTRACT

Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.

12.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31451603

ABSTRACT

Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.


Subject(s)
Adaptation, Physiological/physiology , Interneurons/physiology , Motor Activity/physiology , Sexual Maturation/physiology , Social Behavior , Vibration , Age Factors , Animals , Bees , Female
13.
Front Neuroinform ; 12: 61, 2018.
Article in English | MEDLINE | ID: mdl-30319384

ABSTRACT

The morphology of a neuron is strongly related to its physiological properties, application of logical product and thus to information processing functions. Optical microscope images are widely used for extracting the structure of neurons. Although several approaches have been proposed to trace and extract complex neuronal structures from microscopy images, available methods remain prone to errors. In this study, we present a practical scheme for processing confocal microscope images and reconstructing neuronal structures. We evaluated this scheme using image data samples and associated "gold standard" reconstructions from the BigNeuron Project. In these samples, dendritic arbors belonging to multiple projection branches of the same neuron overlapped in space, making it difficult to automatically and accurately trace their structural connectivity. Our proposed scheme, which combines several software tools for image masking and filtering with an existing tool for dendritic segmentation and tracing, outperformed state-of-the-art automatic methods in reconstructing such neuron structures. For evaluating our scheme, we applied it to a honeybee local interneuron, DL-Int-1, which has complex arbors and is considered to be a critical neuron for encoding the distance information indicated in the waggle dance of the honeybee.

14.
Front Psychol ; 9: 1517, 2018.
Article in English | MEDLINE | ID: mdl-30186204

ABSTRACT

Insects have acquired excellent sensory information processing abilities in the process of evolution. In addition, insects have developed communication schemes based on the temporal patterns of specific sensory signals. For instance, male moths approach a female by detecting the spatiotemporal pattern of a pheromone plume released by the female. Male crickets attract a conspecific female as a mating partner using calling songs with species-specific temporal patterns. The dance communication of honeybees relies on a unique temporal pattern of vibration caused by wingbeats during the dance. Underlying these behaviors, neural circuits involving inhibitory connections play a critical common role in processing the exact timing of the signals in the primary sensory centers of the brain. Here, we discuss common mechanisms for processing the temporal patterns of sensory signals in the insect brain.

15.
BMC Bioinformatics ; 19(1): 143, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29669537

ABSTRACT

BACKGROUND: Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference. RESULTS: We outline here new algorithms - Reg-MaxS and Reg-MaxS-N - for co-registering pairs and groups of morphologies, respectively. Reg-MaxS applies a sequence of translation, rotation and scaling transformations, estimating at each step the transformation parameters that maximize spatial overlap between the volumes occupied by the morphologies. We test this algorithm with synthetic morphologies, showing that it can account for a wide range of transformation differences and is robust to noise. Reg-MaxS-N co-registers groups of more than two morphologies by iteratively calculating an average volume and registering all morphologies to this average using Reg-MaxS. We test Reg-MaxS-N using five groups of morphologies from the Droshophila melanogaster brain and identify the cases for which it outperforms existing algorithms and produce morphologies very similar to those obtained from registration to a standard brain atlas. CONCLUSIONS: We have described and tested algorithms for co-registering pairs and groups of neuron morphologies. We have demonstrated their application to spatial comparison of stereotypic morphologies and calculation of dendritic density profiles, showing how our algorithms for registering neuron morphologies can enable new approaches in comparative morphological analyses and visualization.


Subject(s)
Algorithms , Drosophila melanogaster/cytology , Neurons/cytology , Animals , Brain/cytology , Principal Component Analysis
16.
J Neurosci ; 37(44): 10624-10635, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28993484

ABSTRACT

Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee.SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.


Subject(s)
Animal Communication , Auditory Cortex/physiology , Dancing/physiology , Interneurons/physiology , Vibration , Animals , Arthropod Antennae/physiology , Auditory Cortex/cytology , Bees , Female , Motor Activity/physiology
18.
Front Neuroinform ; 10: 26, 2016.
Article in English | MEDLINE | ID: mdl-27486397

ABSTRACT

To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.

19.
J Neurosci Methods ; 271: 1-13, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27317497

ABSTRACT

BACKGROUND: Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. NEW METHOD: Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. RESULTS: We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. COMPARISON WITH EXISTING METHODS: Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. CONCLUSION: Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes.


Subject(s)
Action Potentials , Microelectrodes , Neurons/physiology , Unsupervised Machine Learning , Animals , Artifacts , Computer Simulation , Models, Theoretical , Rabbits , Retina/physiology
20.
PLoS One ; 11(6): e0155728, 2016.
Article in English | MEDLINE | ID: mdl-27258000

ABSTRACT

Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavioral data. The results support the conclusion that Drosophila wavelength discrimination behavior can best be explained by a contribution of Rh1. These findings are corroborated by results of an information-theoretical analysis that shows that Rh1 provides information for discrimination of natural reflectance spectra.


Subject(s)
Color Vision/physiology , Drosophila Proteins/metabolism , Drosophila/physiology , Photoreceptor Cells, Invertebrate/metabolism , Rhodopsin/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...