Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 15(9): 2364-2373, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32786265

ABSTRACT

Significant advancement of chemoproteomics has contributed to uncovering the mechanism of action (MoA) of small-molecule drugs by characterizing drug-protein interactions in living systems. However, cell-membrane proteins such as G protein-coupled receptors (GPCRs) and ion channels, due to their low abundance and unique biophysical properties associated with multiple transmembrane domains, can present challenges for proteome-wide mapping of drug-receptor interactions. Herein, we describe the development of novel tetrafunctional probes, consisting of (1) a ligand of interest, (2) 2-aryl-5-carboxytetrazole (ACT) as a photoreactive group, (3) a hydrazine-labile cleavable linker, and (4) biotin for enrichment. In live cell labeling studies, we demonstrated that the ACT-based probe showed superior reactivity and selectivity for labeling on-target GPCR by mass spectrometry analysis compared with control probes including diazirine-based probes. By leveraging ACT-based cleavable probes, we further identified a set of representative ionotropic receptors, targeted by CNS drugs, with remarkable selectivity and precise binding site information from mouse brain slices. We anticipate that the robust chemoproteomic platform using the ACT-based cleavable probe coupled with phenotypic screening should promote identification of pharmacologically relevant target receptors of drug candidates and ultimately development of first-in-class drugs with novel MoA.


Subject(s)
Molecular Probes/chemistry , Receptors, AMPA/analysis , Receptors, Dopamine D2/analysis , Receptors, GABA/analysis , Tetrazoles/chemistry , Animals , Binding Sites , Brain/metabolism , CHO Cells , Central Nervous System Agents/chemical synthesis , Central Nervous System Agents/chemistry , Cricetulus , Cyclohexanones/chemical synthesis , Cyclohexanones/chemistry , Hydrazines/chemistry , Mass Spectrometry , Mice , Molecular Probes/chemical synthesis , Molecular Probes/radiation effects , Proteomics/methods , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Receptors, GABA/chemistry , Receptors, GABA/metabolism , Tetrazoles/chemical synthesis , Tetrazoles/radiation effects , Ultraviolet Rays
2.
Structure ; 23(7): 1293-304, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26027732

ABSTRACT

Discerning the structural building blocks of macromolecules is essential for understanding their folding and function. For a new generation of modified nucleic acid ligands (called slow off-rate modified aptamers or SOMAmers), we previously observed essential functions of hydrophobic aromatic side chains in the context of well-known nucleic acid motifs. Here we report a 2.45-Å resolution crystal structure of a SOMAmer complexed with nerve growth factor that lacks any known nucleic acid motifs, instead adopting a configuration akin to a triangular prism. The SOMAmer utilizes extensive hydrophobic stacking interactions, non-canonical base pairing and irregular purine glycosidic bond angles to adopt a completely non-helical, compact S-shaped structure. Aromatic side chains contribute to folding by creating an unprecedented intercalating zipper-like motif and a prominent hydrophobic core. The structure provides compelling rationale for potent inhibitory activity of the SOMAmer and adds entirely novel motifs to the repertoire of structural elements uniquely available to SOMAmers.


Subject(s)
DNA/chemistry , Nerve Growth Factor/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Nerve Growth Factor/physiology , Protein Binding , Protein Structure, Secondary , SELEX Aptamer Technique
3.
Neurosci Res ; 43(3): 251-7, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12103443

ABSTRACT

Mint-1, which is also called as X11 or mammalian Lin10, protein has been implicated in the synaptic vesicle exocytosis and the targeting and localization of synaptic membrane proteins. Here, we established mint-1 gene knockout (mint-1 KO) mice and investigated vesicular and transporter-mediated dopamine (DA) release evoked by high K(+) and methamphetamine (METH), respectively. Compared with wild-type control, high K(+)-evoked striatal DA release was attenuated, but not significantly, in the KO mice as measured by microdialysis method. The METH-induced DA release was significantly attenuated in the KO mice. In addition, METH-induced stereotypy was also significantly attenuated in the KO mice. Mint-1 KO mice showed more sensitive and prominent behavioral response to an approaching object as compared with wild-type mice. These results suggest that mint-1 protein is involved in transporter-mediated DA release induced by METH.


Subject(s)
Carrier Proteins/genetics , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Methamphetamine/pharmacology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stereotyped Behavior/drug effects , Stereotyped Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...