Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Kinet ; 86: 117-132, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37181269

ABSTRACT

The purpose of this study was to examine the effects of intermittent versus continuous energy restriction on body composition, resting metabolic rate, and eating behaviors in resistance-trained females. Thirty-eight resistance-trained females (mean ± standard deviation age: 22.3 ± 4.2 years) were randomized to receive either six weeks of a continuous 25% reduction in energy intake (n = 18), or one week of energy balance after every two weeks of 25% energy restriction (eight weeks total; n = 20). Participants were instructed to ingest 1.8 g protein/kilogram bodyweight per day and completed three weekly supervised resistance training sessions throughout the intervention. There were no differences between groups for changes over time in body composition, resting metabolic rate, or seven of the eight measured eating behavior variables (p > 0.05). However, a significant group-by-time interaction for disinhibition (p < 0.01) from the Three-Factor Eating Questionnaire was observed, with values (± standard error) in the continuous group increasing from 4.91 ± 0.73 to 6.17 ± 0.71, while values in the intermittent group decreased from 6.80 ± 0.68 to 6.05 ± 0.68. Thus, diet breaks do not appear to induce improvements in body composition or metabolic rate in comparison with continuous energy restriction over six weeks of dieting, but may be employed for those who desire a short-term break from an energy-restricted diet without fear of fat regain. While diet breaks may reduce the impact of prolonged energy restriction on measures of disinhibition, they also require a longer time period that may be less appealing for some individuals.

2.
J Strength Cond Res ; 36(6): 1498-1505, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35333210

ABSTRACT

ABSTRACT: Lewis, MH, Siedler, MR, Lamadrid, P, Ford, S, Smith, T, SanFilippo, G, Waddell, B, Trexler, ET, Buckner, S, and Campbell, BI. Sex differences may exist for performance fatigue but not recovery after single-joint upper-body and lower-body resistance exercise. J Strength Cond Res 36(6): 1498-1505, 2022-This study evaluated sex differences in performance recovery and fatigue during dynamic exercise. Twenty-eight resistance-trained males (n = 16) and females (n = 12) completed a repeated-measures, randomized, parallel-groups design. The protocol consisted of a baseline assessment, a recovery period (4, 24, or 48 hours), and a postrecovery assessment. The assessments were identical consisting of 4 sets of 10 repetition maximum (10RM) bicep curls and 4 sets of 10RM leg extensions to failure. Recovery was quantified as the number of total repetitions completed in the postrecovery bout. Fatigue was quantified as the number of repetitions completed set to set within the session. For analysis, we set the level of significance at p ≤ 0.05. No sex differences in performance recovery were observed across any of the investigated time periods for either exercise modality. Regarding fatigue, significant effects were observed for set (p < 0.001) and sex (p = 0.031) for bicep curls. Repetitions dropped in later sets, and females generally completed a greater number of repetitions than males (8.8 ± 0.5 vs. 7.2 ± 0.5). For leg extension, a significant sex × set interaction was observed (p = 0.003), but post hoc tests revealed these sex differences as marginal. Our results suggest that in dynamic bicep curls and leg extensions, other factors unrelated to sex may be more impactful on performance recovery. To optimize an athlete's desired adaptations, it may be more important to consider other variables unrelated to sex such as volume, perceived exertion, and training history when formulating training prescriptions for single-joint exercises.


Subject(s)
Resistance Training , Exercise , Fatigue , Female , Humans , Male , Muscle, Skeletal , Resistance Training/methods , Sex Characteristics
4.
J Sport Exerc Psychol ; 42(1): 70-81, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32005007

ABSTRACT

High-intensity interval training (HIIT) is highly beneficial for health and fitness and is well tolerated. Treadmill-based HIIT normally includes running interspersed with walking. The purpose of this study was to compare ungraded running and graded walking HIIT on perceived exertion, affective valence, and enjoyment. Thirty-four active, healthy adults completed maximal testing and two 20-min HIIT trials alternating between 85% of VO2peak and a comfortable walking speed. Affective valence, enjoyment, and perceived exertion, both overall (ratings of perceived exertion [RPE]-O) and legs only (RPE-L), were measured. RPE-O and affective valence were similar between HIIT trials (p > .05), RPE-L was higher for walk HIIT (p < .05), and enjoyment was higher for run HIIT (p < .05). Findings indicate that both walk and run HIIT produce exertion, affective, and enjoyment responses that are positive and possibly supportive of exercise behavior. Walk HIIT may be desirable for individuals who are unable or do not want to run.

5.
J Funct Morphol Kinesiol ; 5(2)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-33467243

ABSTRACT

The purpose of this case-series was to evaluate the physiological, psychological and performance-related changes that occur during the postcompetition period. Participants included three male (34.3 ± 6.8 years, 181.6 ± 8.9 cm) and four female (29.3 ± 4.9 years, 161.4 ± 6.0 cm) natural physique athletes. Body composition (fat mass (FM) and fat-free mass (FFM); Skinfold), resting metabolic rate (RMR; indirect calorimetry), total body water (TBW; bioelectrical impedance analysis), sleep quality (PSQI; Pittsburgh Sleep Quality Index), quality of life measures (RAND SF36), menstrual irregularities, and knee extension performance were assessed 1-2 weeks prior to competition, and 4 weeks and 8-10 weeks postcompetition. Blood hormones (free triiodothyronine; T3, free thyroxine; T4, and leptin) were assessed at 1-2 weeks prior to competition and 8-10 weeks postcompetition. Participants tracked daily macronutrient intake daily for the duration of the study. Group-level data were analyzed using exploratory, one-tailed, nonparametric statistical tests. Bodyweight, FM, bodyfat%, RMR, and blood hormones (T3, T4, and leptin) increased significantly (p < 0.05) at the group level. Relative (%Δ) increases in fat mass were associated with △RMR (τ = 0.90; p = 0.001) and △leptin (τ = 0.68; p = 0.02), and △leptin was associated with △RMR (τ = 0.59; p = 0.03). The time course for recovery appears to vary substantially between individuals potentially due to strategies implemented postcompetition.

SELECTION OF CITATIONS
SEARCH DETAIL
...