Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11020, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419920

ABSTRACT

In socially monogamous prairie voles (Microtus ochrogaster), parental behaviors not only occur in mothers and fathers, but also exist in some virgin males. In contrast, the other virgin males display aggressive behaviors towards conspecific pups. However, little is known about the molecular underpinnings of this behavioral dichotomy, such as gene expression changes and their regulatory mechanisms. To address this, we profiled the transcriptome and DNA methylome of hippocampal dentate gyrus of four prairie vole groups, namely attacker virgin males, parental virgin males, fathers, and mothers. While we found a concordant gene expression pattern between parental virgin males and fathers, the attacker virgin males have a more deviated transcriptome. Moreover, numerous DNA methylation changes were found in pair-wise comparisons among the four groups. We found some DNA methylation changes overlapping with transcription differences, across gene-bodies and promoter regions. Furthermore, the gene expression changes and methylome alterations are selectively enriched in certain biological pathways, such as Wnt signaling, which suggest a canonical transcription regulatory role of DNA methylation in paternal behavior. Therefore, our study presents an integrated view of prairie vole dentate gyrus transcriptome and epigenome that provides a DNA epigenetic based molecular insight of paternal behavior.


Subject(s)
DNA Methylation , Paternal Behavior , Male , Animals , Grassland , Hippocampus , Arvicolinae/genetics , Arvicolinae/metabolism , Dentate Gyrus , Social Behavior
2.
Cereb Cortex ; 31(4): 1998-2012, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33230530

ABSTRACT

Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Subject(s)
DNA Methyltransferase 3A/metabolism , Locomotion/physiology , Prefrontal Cortex/enzymology , Stress, Psychological/enzymology , Stress, Psychological/psychology , Synapses/enzymology , Animals , Chronic Disease , DNA Methyltransferase 3A/antagonists & inhibitors , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Locomotion/drug effects , Male , Mice , Phthalimides/pharmacology , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Tryptophan/analogs & derivatives , Tryptophan/pharmacology
3.
Biol Psychiatry ; 88(10): 758-766, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32711952

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are a class of transcribed RNA molecules greater than 200 nucleotides in length. Although lncRNAs do not encode proteins, they play numerous functional roles in gene expression regulation. lncRNAs are notably abundant in brain; however, their neural functions remain largely unknown. METHODS: We examined the expression of the lncRNA Gas5 in nucleus accumbens (NAc), a key brain reward region, of adult male mice after cocaine administration. We then performed viral-mediated overexpression of Gas5 in NAc neurons to determine its role in addiction-related behaviors. We also carried out RNA sequencing to investigate Gas5-mediated transcriptomic changes. RESULTS: We demonstrated that repeated short-term or long-term cocaine administration decreased expression of Gas5 in NAc. Viral-mediated overexpression of Gas5 in NAc neurons decreased cocaine-induced conditioned place preference. Likewise, Gas5 overexpression led to decreased cocaine intake, decreased motivation, and compulsive-like behavior to acquire cocaine, and it facilitated extinction of cocaine-seeking behavior. Transcriptome profiling identified numerous Gas5-mediated gene expression changes that are enriched in relevant neural function categories. Interestingly, these Gas5-regulated gene expression changes significantly overlap with chronic cocaine-induced transcriptome alterations, suggesting that Gas5 may serve as an important regulator of transcriptional responses to cocaine. CONCLUSIONS: Altogether, our study demonstrates a novel lncRNA-based molecular mechanism of cocaine action.


Subject(s)
Cocaine , RNA, Long Noncoding , Animals , Cocaine/pharmacology , Gene Expression Regulation , Male , Mice , Nucleus Accumbens , RNA, Long Noncoding/genetics , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...