Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Physiol Rep ; 11(22): e15788, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37985159

ABSTRACT

Titin-dependent stiffening of cardiomyocytes is a significant contributor to left ventricular (LV) diastolic dysfunction in heart failure with preserved LV ejection fraction (HFpEF). Small heat shock proteins (HSPs), such as HSPB5 and HSPB1, protect titin and administration of HSPB5 in vitro lowers cardiomyocyte stiffness in pressure-overload hypertrophy. In humans, oral treatment with geranylgeranylacetone (GGA) increases myocardial HSP expression, but the functional implications are unknown. Our objective was to investigate whether oral GGA treatment lowers cardiomyocyte stiffness and attenuates LV diastolic dysfunction in a rat model of the cardiometabolic syndrome. Twenty-one-week-old male lean (n = 10) and obese (n = 20) ZSF1 rats were studied, and obese rats were randomized to receive GGA (200 mg/kg/day) or vehicle by oral gavage for 4 weeks. Echocardiography and cardiac catheterization were performed before sacrifice at 25 weeks of age. Titin-based stiffness (Fpassive ) was determined by force measurements in relaxing solution with 100 nM [Ca2+ ] in permeabilized cardiomyocytes at sarcomere lengths (SL) ranging from 1.8 to 2.4 µm. In obese ZSF1 rats, GGA reduced isovolumic relaxation time of the LV without affecting blood pressure, EF or LV weight. In cardiomyocytes, GGA increased myofilament-bound HSPB5 and HSPB1 expression. Vehicle-treated obese rats exhibited higher cardiomyocyte stiffness at all SLs compared to lean rats, while GGA reduced stiffness at SL 2.0 µm. In obese ZSF1 rats, oral GGA treatment improves cardiomyocyte stiffness by increasing myofilament-bound HSPB1 and HSPB5. GGA could represent a potential novel therapy for the early stage of diastolic dysfunction in the cardiometabolic syndrome.


Subject(s)
Heart Failure , Metabolic Syndrome , Ventricular Dysfunction, Left , Humans , Rats , Male , Animals , Myocytes, Cardiac/metabolism , Connectin/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Stroke Volume/physiology , Obesity/drug therapy , Obesity/metabolism
2.
PLoS One ; 16(11): e0260456, 2021.
Article in English | MEDLINE | ID: mdl-34843578

ABSTRACT

BACKGROUND: Right ventricular function is an important prognostic marker for pulmonary arterial hypertension. Native T1 mapping using cardiovascular magnetic resonance imaging can characterize the myocardium, but accumulating evidence indicates that T1 values of the septum or ventricular insertion points do not have predictive potential in pulmonary arterial hypertension. We aimed to elucidate whether native T1 values of the right ventricular free wall (RVT1) can predict poor outcomes in patients with pulmonary arterial hypertension. METHODS: This retrospective study included 30 patients with pulmonary arterial hypertension (median age, 45 years; mean pulmonary artery pressure, 41±13 mmHg) and 16 healthy controls (median age, 43 years) who underwent native T1 mapping. RVT1 was obtained from the inferior right ventricular free wall during end systole. RESULTS: Patients with pulmonary arterial hypertension had significantly higher native RVT1 than did controls (1384±74 vs. 1217±57 ms, p<0.001). Compared with T1 values of the septum or ventricular insertion points, RVT1 correlated better with the effective right ventricular elastance index (R = -0.53, p = 0.003), ventricular-arterial uncoupling (R = 0.46, p = 0.013), and serum brain natriuretic peptide levels (R = 0.65, p<0.001). Moreover, the baseline RVT1 was an accurate predictor of the reduced right ventricular ejection fraction at the 12-month follow-up (delta -3%). RVT1 was independently associated with composite events of death or hospitalization from any cause (hazard ratio = 1.02, p = 0.002). CONCLUSIONS: RVT1 was predictive of right ventricular performance and outcomes in patients with pulmonary arterial hypertension. Thus, native T1 mapping in the right ventricular free wall may be an effective prognostic method for pulmonary arterial hypertension.


Subject(s)
Heart Ventricles/physiopathology , Pulmonary Arterial Hypertension/diagnosis , Adult , Aged , Female , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prognosis , Pulmonary Arterial Hypertension/diagnostic imaging , Pulmonary Arterial Hypertension/physiopathology , Retrospective Studies , Stroke Volume , Ventricular Function, Right
3.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33480422

ABSTRACT

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Carvedilol/pharmacology , Endothelium, Vascular/drug effects , Insulin Resistance , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Coronary Angiography , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Hypertension/physiopathology , Male , Metoprolol/pharmacology , Nitric Oxide/metabolism , Rats , Rats, Wistar , Sodium Chloride, Dietary/administration & dosage
4.
Front Physiol ; 12: 766818, 2021.
Article in English | MEDLINE | ID: mdl-35126171

ABSTRACT

The majority of the conventional techniques that are utilized for investigating the pathogenesis of cardiovascular disease in preclinical animal models do not permit microlevel assessment of in situ cardiomyocyte and microvascular functions. Therefore, it has been difficult to establish whether cardiac dysfunction in complex multiorgan disease states, such as heart failure with preserved ejection fraction and pulmonary hypertension, have their origins in microvascular dysfunction or rather in the cardiomyocyte. Herein, we describe our approach of utilizing synchrotron radiation microangiography to, first, ascertain whether the growth hormone secretagogue (GHS) hexarelin is a vasodilator in the coronary circulation of normal and anesthetized Sprague-Dawley rats, and next investigate if hexarelin is able to prevent the pathogenesis of right ventricle (RV) dysfunction in pulmonary hypertension in the sugen chronic hypoxia model rat. We show that acute hexarelin administration evokes coronary microvascular dilation through GHS-receptor 1a and nitric oxide, and through endothelium-derived hyperpolarization. Previous work indicated that chronic exogenous administration of ghrelin largely prevented the pathogenesis of pulmonary hypertension in chronic hypoxia and in monocrotaline models. Unexpectedly, chronic hexarelin administration prior to sugen chronic hypoxia did not prevent RV hypertrophy or RV cardiomyocyte relaxation impairment. Small-angle X-ray scattering revealed that super relaxed myosin filaments contributed to diastolic dysfunction, and that length-dependent activation might contribute to sustained contractility of the RV. Thus, synchrotron-based imaging approaches can reveal novel insights into cardiac and coronary functions in vivo.

5.
J Physiol ; 598(15): 3129-3153, 2020 08.
Article in English | MEDLINE | ID: mdl-32394454

ABSTRACT

KEY POINTS: The Anrep effect represents the alteration of left ventricular (LV) contractility to acutely enhanced afterload in a few seconds, thereby preserving stroke volume (SV) at constant preload. As a result of the missing preload stretch in our model, the Anrep effect differs from the slow force response and has a different mechanism. The Anrep effect demonstrated two different phases. First, the sudden increased afterload was momentary equilibrated by the enhanced LV contractility as a result of higher power strokes of strongly-bound myosin cross-bridges. Second, the slightly delayed recovery of SV is perhaps dependent on Ca2+ /calmodulin-dependent protein kinase II activation caused by oxidation and myofilament phosphorylation (cardiac myosin-binding protein-C, myosin light chain 2), maximizing the recruitment of available strongly-bound myosin cross-bridges. Short-lived oxidative stress might present a new facet of subcellular signalling with respect to cardiovascular regulation. Relevance for human physiology was demonstrated by echocardiography disclosing the Anrep effect in humans during handgrip exercise. ABSTRACT: The present study investigated whether oxidative stress and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) activity are involved in triggering the Anrep effect. LV pressure-volume (PV) analyses of isolated, preload controlled working hearts were performed at two afterload levels (60 and 100 mmHg) in C57BL/6N wild-type (WT) and CaMKII-double knockout mice (DKOCaMKII ). In snap-frozen WT hearts, force-pCa relationship, H2 O2 generation, CaMKII oxidation and phosphorylation of myofilament and Ca2+ handling proteins were assessed. Acutely raised afterload showed significantly increased wall stress, H2 O2 generation and LV contractility in the PV diagram with an initial decrease and recovery of stroke volume, whereas end-diastolic pressure and volume, as well as heart rate, remained constant. Afterload induced increase in LV contractility was blunted in DKOCaMKII -hearts. Force development of single WT cardiomyocytes was greater with elevated afterload at submaximal Ca2+ concentration and associated with increases in CaMKII oxidation and phosphorylation of cardiac-myosin binding protein-C, myosin light chain and Ca2+ handling proteins. CaMKII activity is involved in the regulation of the Anrep effect and associates with stimulation of oxidative stress, presumably starting a cascade of CaMKII oxidation with downstream phosphorylation of myofilament and Ca2+ handling proteins. These mechanisms improve LV inotropy and preserve stroke volume within few seconds.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Myocardial Contraction , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hand Strength , Homeostasis , Mice , Mice, Inbred C57BL , Phosphorylation
6.
Cardiovasc Diabetol ; 19(1): 24, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32093680

ABSTRACT

BACKGROUND: Obesity, hypertension and prediabetes contribute greatly to coronary artery disease, heart failure and vascular events, and are the leading cause of mortality and morbidity in developed societies. Salt sensitivity exacerbates endothelial dysfunction. Herein, we investigated the effect of chronic glucagon like peptide-1 (GLP-1) receptor activation on the coronary microcirculation and cardiac remodeling in Zucker rats on a high-salt diet (6% NaCl). METHODS: Eight-week old Zucker lean (+/+) and obese (fa/fa) rats were treated with vehicle or liraglutide (LIRA) (0.1 mg/kg/day, s.c.) for 8 weeks. Systolic blood pressure (SBP) was measured using tail-cuff method in conscious rats. Myocardial function was assessed by echocardiography. Synchrotron contrast microangiography was then used to investigate coronary arterial vessel function (vessels 50-350 µm internal diameter) in vivo in anesthetized rats. Myocardial gene and protein expression levels of vasoactive factors, inflammatory, oxidative stress and remodeling markers were determined by real-time PCR and Western blotting. RESULTS: We found that in comparison to the vehicle-treated fa/fa rats, rats treated with LIRA showed significant improvement in acetylcholine-mediated vasodilation in the small arteries and arterioles (< 150 µm diameter). Neither soluble guanylyl cyclase or endothelial NO synthase (eNOS) mRNA levels or total eNOS protein expression in the myocardium were significantly altered by LIRA. However, LIRA downregulated Nox-1 mRNA (p = 0.030) and reduced ET-1 protein (p = 0.044) expression. LIRA significantly attenuated the expressions of proinflammatory and profibrotic associated biomarkers (NF-κB, CD68, IL-1ß, TGF-ß1, osteopontin) and nitrotyrosine in comparison to fa/fa-Veh rats, but did not attenuate perivascular fibrosis appreciably. CONCLUSIONS: In a rat model of metabolic syndrome, chronic LIRA treatment improved the capacity for NO-mediated dilation throughout the coronary macro and microcirculations and partially normalized myocardial remodeling independent of changes in body mass or blood glucose.


Subject(s)
Coronary Artery Disease/prevention & control , Coronary Circulation/drug effects , Hypertension/drug therapy , Hypoglycemic Agents/pharmacology , Incretins/pharmacology , Insulin Resistance , Liraglutide/pharmacology , Microcirculation/drug effects , Obesity/drug therapy , Animals , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hypertension/etiology , Hypertension/metabolism , Hypertension/physiopathology , Male , Nitric Oxide/metabolism , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Oxidative Stress/drug effects , Rats, Zucker , Sodium Chloride, Dietary , Ventricular Remodeling/drug effects
7.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Article in English | MEDLINE | ID: mdl-31669609

ABSTRACT

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Subject(s)
Diastole , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Inflammation/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Prediabetic State/pathology , Prediabetic State/physiopathology , Actin Cytoskeleton/metabolism , Animals , Connectin/metabolism , Cytokines/metabolism , Disease Models, Animal , Guanylate Cyclase/metabolism , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hydrogen Peroxide/metabolism , Male , Multienzyme Complexes/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myosins/metabolism , NADH, NADPH Oxidoreductases/metabolism , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type III/metabolism , Peptides/metabolism , Phosphorylation , Rats, Wistar , Superoxides/metabolism , Vasodilation/drug effects
8.
Vasc Biol ; 1(1): H97-H102, 2019.
Article in English | MEDLINE | ID: mdl-32923960

ABSTRACT

Ghrelin is a small peptide with important roles in the regulation of appetite, gut motility, glucose homeostasis as well as cardiovascular protection. This review highlights the role that acyl ghrelin plays in maintaining normal endothelial function by maintaining the balance of vasodilator-vasoconstrictor factors, inhibiting inflammatory cytokine production and immune cell recruitment to sites of vascular injury and by promoting angiogenesis.

9.
JACC Basic Transl Sci ; 3(2): 213-226, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30062207

ABSTRACT

Previous studies have shown that patients with Takotsubo syndrome (TS) have supranormal nitric oxide signaling, and post-mortem studies of TS heart samples revealed nitrosative stress. Therefore, we first showed in a female rat model that isoproterenol induces TS-like echocardiographic changes, evidence of nitrosative stress, and consequent activation of the energy-depleting enzyme poly(ADP-ribose) polymerase-1. We subsequently showed that pre-treatment with an inhibitor of poly(ADP-ribose) polymerase-1 ameliorated contractile abnormalities. These findings thus add to previous reports of aberrant ß-adrenoceptor signaling (coupled with nitric oxide synthase activation) to elucidate mechanisms of impaired cardiac function in TS and point to potential methods of treatment.

10.
Sci Rep ; 7(1): 18108, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273789

ABSTRACT

Reduced clearance of lipoproteins by HDL scavenger receptor class B1 (SR-B1) plays an important role in occlusive coronary artery disease. However, it is not clear how much microvascular dysfunction contributes to ischemic cardiomyopathy. Our aim was to determine the distribution of vascular dysfunction in vivo in the coronary circulation of male mice after brief exposure to Paigen high fat diet, and whether this vasomotor dysfunction involved nitric oxide (NO) and or endothelium derived hyperpolarization factors (EDHF). We utilised mice with hypomorphic ApoE lipoprotein that lacked SR-B1 (SR-B1-/-/ApoER61h/h, n = 8) or were heterozygous for SR-B1 (SR-B1+/-/ApoER61h/h, n = 8) to investigate coronary dilator function with synchrotron microangiography. Partially occlusive stenoses were observed in vivo in SR-B1 deficient mice only. Increases in artery-arteriole calibre to acetylcholine and sodium nitroprusside stimulation were absent in SR-B1 deficient mice. Residual dilation to acetylcholine following L-NAME (50 mg/kg) and sodium meclofenamate (3 mg/kg) blockade was present in both mouse groups, except at occlusions, indicating that EDHF was not impaired. We show that SR-B1 deficiency caused impairment of NO-mediated dilation of conductance and microvessels. Our findings also suggest EDHF and prostanoids are important for global perfusion, but ultimately the loss of NO-mediated vasodilation contributes to atherothrombotic progression in ischemic cardiomyopathy.


Subject(s)
CD36 Antigens/metabolism , Coronary Artery Disease/physiopathology , Coronary Circulation/physiology , Endothelium, Vascular/physiopathology , Myocardial Ischemia/physiopathology , Animals , CD36 Antigens/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Hemodynamics/physiology , Male , Mice , Mice, Knockout , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Nitric Oxide/metabolism , Oxidative Stress/physiology
13.
World J Diabetes ; 6(7): 943-60, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26185602

ABSTRACT

Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus.

14.
Cardiovasc Diabetol ; 14: 92, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26194354

ABSTRACT

BACKGROUND: Impaired actin-myosin cross-bridge (CB) dynamics correlate with impaired left ventricular (LV) function in early diabetic cardiomyopathy (DCM). Elevated expression and activity of Rho kinase (ROCK) contributes to the development of DCM. ROCK targets several sarcomeric proteins including myosin light chain 2, myosin binding protein-C (MyBP-C), troponin I (TnI) and troponin T that all have important roles in regulating CB dynamics and contractility of the myocardium. Our aim was to examine if chronic ROCK inhibition prevents impaired CB dynamics and LV dysfunction in a rat model of early diabetes, and whether these changes are associated with changes in myofilament phosphorylation state. METHODS: Seven days post-diabetes induction (65 mg/kg ip, streptozotocin), diabetic rats received the ROCK inhibitor, fasudil (10 mg/kg/day ip) or vehicle for 14 days. Rats underwent cardiac catheterization to assess LV function simultaneous with X-ray diffraction using synchrotron radiation to assess in situ CB dynamics. RESULTS: Compared to controls, diabetic rats developed mild systolic and diastolic dysfunction, which was attenuated by fasudil. End-diastolic and systolic myosin proximity to actin filaments were significantly reduced in diabetic rats (P < 0.05). In all rats there was an inverse correlation between ROCK1 expression and the extension of myosin CB in diastole, with the lowest ROCK expression in control and fasudil-treated diabetic rats. In diabetic and fasudil-treated diabetic rats changes in relative phosphorylation of TnI and MyBP-C were not significant from controls. CONCLUSIONS: Our results demonstrate a clear role for ROCK in the development of LV dysfunction and impaired CB dynamics in early DCM.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetic Cardiomyopathies/prevention & control , Myocardial Contraction/drug effects , Myocardium/enzymology , Myosins/metabolism , Protein Kinase Inhibitors/pharmacology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Actins/metabolism , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Male , Phosphorylation , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology , rho-Associated Kinases/metabolism
15.
Cardiovasc Diabetol ; 12: 111, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-24059472

ABSTRACT

OBJECTIVES: Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes. METHODS: Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6). Changes in vessel number and calibre during vasodilator stimulation before and after blockade of nitric oxide synthase and cyclooxygenase were compared between rats. Acute responses to ROCK inhibitor, fasudil (10 mg/kg iv) was evaluated. Further, perivascular and myocardial fibrosis, arterial intimal thickening were assessed by histology, and capillary density, nitrotyrosine and ROCK1/2 expressions were evaluated by immunohistochemical staining. RESULTS: Diabetic rats had significantly elevated plasma glucose (P < 0.001 vs control), but did not differ in fibrotic scores, media to lumen ratio, capillary density or baseline visible vessel number or calibre. Responses to acetylcholine and sodium nitroprusside stimulation were similar between groups. However, in comparison to control rats the diabetic rats showed more segmental constrictions during blockade, which were not completely alleviated by acetylcholine, but were alleviated by fasudil. Further, second order vessel branches in diabetic rats were significantly more dilated relative to baseline (37% vs 12% increase, P < 0.05) after fasudil treatment compared to control rats, while visible vessel number increased in both groups. ROCK2 expression was borderline greater in diabetic rat hearts (P < 0.053). CONCLUSIONS: We found that ahead of the reported decline in coronary endothelial vasodilator function in diabetic rats there was moderate elevation in ROCK expression, more widespread segmental constriction when nitric oxide and prostacyclin production were inhibited and notably, increased calibre in second and third order small arteries-arterioles following ROCK inhibition. Based on nitrotyrosine staining oxidative stress was not significantly elevated in early diabetic rats. We conclude that tonic ROCK mediated vasoconstriction contributes to coronary vasomotor tone in early diabetes.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Angiopathies/drug therapy , Microcirculation/drug effects , Protein Kinase Inhibitors/pharmacology , Vasodilator Agents/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Coronary Angiography , Coronary Vessels/diagnostic imaging , Coronary Vessels/enzymology , Coronary Vessels/physiopathology , Cyclooxygenase Inhibitors/pharmacology , Diabetic Angiopathies/diagnostic imaging , Diabetic Angiopathies/enzymology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/physiopathology , Epoprostenol/metabolism , Fibrosis , Male , Myocardium/enzymology , Myocardium/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Sprague-Dawley , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...