Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 119(2): 189-201, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9245759

ABSTRACT

This is the first report of bioreactive self-assembled monolayers, covalently bound to atomically flat silicon surfaces and capable of binding biomolecules for investigation by scanning probe microscopy and other surface-related assays and sensing devices. These monolayers are stable under a wide range of conditions and allow tailor-made functionalization for many purposes. We describe the substrate preparation and present an STM and SFM characterization, partly performed with multiwalled carbon nanotubes as tapping-mode supertips. Furthermore, we present two strategies of introducing in situ reactive headgroup functionalities. One method entails a free radical chlorosulfonation process with subsequent sulfonamide formation. A second method employs singlet carbenemediated hydrogen-carbon insertion of a heterobifunctional, amino-reactive trifluoromethyl-diazirinyl crosslinker. We believe that this new substrate is advantageous to others, because it (i) is atomically flat over large areas and can be prepared in a few hours with standard equipment, (ii) is stable under most conditions, (iii) can be modified to adjust a certain degree of reactivity and hydrophobicity, which allows physical adsorption or covalent crosslinking of the biological specimen, (iv) builds the bridge between semiconductor microfabrication and organic/biological molecular systems, and (v) is accessible to nanopatterning and applications requiring conductive substrates.


Subject(s)
Microscopy, Scanning Tunneling/methods , Silicon/chemistry , Alkanes/chemistry , Cross-Linking Reagents , DNA/ultrastructure , Hydrogen , Molecular Structure , Spectrum Analysis , Succinimides/chemistry , Sulfonamides/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...