Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Clin Biomech (Bristol, Avon) ; 117: 106287, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38870877

ABSTRACT

BACKGROUND: Altered gait could influence knee joint moment magnitudes and cumulative damage over time. Gait modifications have been shown to reduce knee loading in people with knee osteoarthritis during walking, although this has not been explored in multiple daily activities. Therefore, this study investigated the effect of different foot orientations on knee loading during multiple daily activities in people with and without knee osteoarthritis. METHODS: Thirty people with knee osteoarthritis and twenty-nine without (control) performed walking, stair ambulation and sit-to-stand across a range of foot progression angles (neutral, toe-in, toe-out and preferred). Peak knee adduction moment, knee adduction moment impulse and knee pain were compared across a continuous range of foot orientations, between activities, and groups. FINDINGS: Increased foot progression angle (more toe-in) reduced 1st peak knee adduction moment across all activities in both knee osteoarthritis and control (P < 0.001). There was a greater reduction in knee adduction moment in the control group during walking and stair ambulation (P ≤ 0.006), where the knee osteoarthritis group already walked preferably less toe-out than the control group. Under preferred condition, stair descent had the greatest knee loading and knee pain compared to other activities. INTERPRETATION: Although increased foot progression angle (toward toe-in) appeared to be more effective in reducing knee loading for all activities, toe-in modification might not benefit stair ambulation. Future gait modification should likely be personalised to each patient considering the individual difference in preferred gait and knee alignment required to shift the loading medially or laterally.

2.
BMC Musculoskelet Disord ; 24(1): 984, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114980

ABSTRACT

BACKGROUND: Gait retraining is a common therapeutic intervention that can alter gait characteristics to reduce knee loading in knee osteoarthritis populations. It can be enhanced when combined with biofeedback that provides real-time information about the users' gait, either directly (i.e. knee moment feedback) or indirectly (i.e. gait pattern feedback). However, it is unknown which types of biofeedback are more effective at reducing knee loading, and also how the changes in gait affect pain during different activities of daily living. Therefore, this study aims to evaluate the acute (6 weeks of training) and chronic (1 month post training) effects of biofeedback based on personalised gait patterns to reduce knee loading and pain in people with knee osteoarthritis, as well as examine if more than one session of knee moment feedback is needed to optimise the gait patterns. METHODS: This is a parallel group, randomised controlled trial in a symptomatic knee osteoarthritis population in which participants will be randomised into either a knee moment biofeedback group (n = 20), a gait pattern biofeedback group (n = 20) or a control group (n = 10). Supervised training sessions will be carried out weekly for six continuous weeks, with real-time biofeedback provided using marker-based motion capture and an instrumented treadmill. Baseline, post-intervention and 1-month follow-up assessments will be performed to measure knee loading parameters, gait pattern parameters, muscle activation, knee pain and functional ability. DISCUSSION: This study will identify the optimal gait patterns for participants' gait retraining and compare the effectiveness of gait pattern biofeedback to a control group in reducing knee loading and index knee pain. Additionally, this study will explore how many sessions are needed to identify the optimal gait pattern with knee moment feedback. Results will be disseminated in future peer-reviewed journal articles, conference presentations and internet media to a wide audience of clinicians, physiotherapists, researchers and individuals with knee osteoarthritis. TRIAL REGISTRATION: This study was retrospectively registered under the International Standard Randomised Controlled Trial Number registry on 7th March 2023 (ISRCTN28045513).


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/therapy , Activities of Daily Living , Gait/physiology , Knee Joint , Biofeedback, Psychology/methods , Biomechanical Phenomena , Pain , Randomized Controlled Trials as Topic
3.
PLoS One ; 18(11): e0293917, 2023.
Article in English | MEDLINE | ID: mdl-37943887

ABSTRACT

This study examined if occluded joint locations, obtained from 2D markerless motion capture (single camera view), produced 2D joint angles with reduced agreement compared to visible joints, and if 2D frontal plane joint angles were usable for practical applications. Fifteen healthy participants performed over-ground walking whilst recorded by fifteen marker-based cameras and two machine vision cameras (frontal and sagittal plane). Repeated measures Bland-Altman analysis illustrated that markerless standard deviation of bias and limits of agreement for the occluded-side hip and knee joint angles in the sagittal plane were double that of the camera-side (visible) hip and knee. Camera-side sagittal plane knee and hip angles were near or within marker-based error values previously observed. While frontal plane limits of agreement accounted for 35-46% of total range of motion at the hip and knee, Bland-Altman bias and limits of agreement (-4.6-1.6 ± 3.7-4.2˚) were actually similar to previously reported marker-based error values. This was not true for the ankle, where the limits of agreement (± 12˚) were still too high for practical applications. Our results add to previous literature, highlighting shortcomings of current pose estimation algorithms and labelled datasets. As such, this paper finishes by reviewing methods for creating anatomically accurate markerless training data using marker-based motion capture data.


Subject(s)
Knee Joint , Motion Capture , Humans , Biomechanical Phenomena , Walking , Lower Extremity , Motion
4.
BMJ Open ; 12(11): e066959, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36410824

ABSTRACT

INTRODUCTION: There is a limited research exploring biomechanical risk factors for the development of knee osteoarthritis (KOA) and lower back pain (LBP) between lower limb amputee subgroups, (eg, transtibial amputees (TTA) vs transfemoral amputees (TFA), or TTA dysvascular vs TTA traumatic). Previous reviews have focused primarily on studies where symptoms of KOA or LBP are present, however, due to limited study numbers, this hinders their scope and ability to compare between amputee subgroups. Therefore, the aim of this systematic review is to descriptively compare biomechanical risk factors for developing KOA and LBP between lower limb amputee subgroups, irrespective of whether KOA or LBP was present. METHODS AND ANALYSIS: This review is currently in progress and screening results are presented alongside the protocol to highlight challenges encountered during data extraction. Five electronic databases were searched (Medline-Web of Science, PubMed, CINAHL, Embase and Scopus). Eligible studies were observational or interventional, reporting biomechanical gait outcomes for individual legs in adult lower limb amputees during flat walking, incline/decline walking or stair ascent/descent. Two reviewers screened for eligibility and level of agreement was assessed using Cohen's Kappa. Data extraction is ongoing. Risk of bias will be assessed using a modified Downs and Black method, and outcome measures will be descriptively synthesised. ETHICS AND DISSEMINATION: There are no ethical considerations for this systematic review. Due to its scope, results are expected to be published in three separate manuscripts: (1) biomechanical risk factors of KOA between TTA and TFA, relative to non-amputees, (2) biomechanical risk factors of LBP between TTA and TFA, relative to non-amputees and (3) biomechanical risk factors of KOA and LBP between TTA with traumatic or dysvascular causes, relative to non-amputees. PROSPERO REGISTRATION NUMBER: CRD42020158247.


Subject(s)
Amputees , Low Back Pain , Osteoarthritis, Knee , Adult , Humans , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/complications , Low Back Pain/etiology , Leg , Risk Factors , Systematic Reviews as Topic
5.
J Biomech ; 144: 111338, 2022 11.
Article in English | MEDLINE | ID: mdl-36252308

ABSTRACT

This study presented a fully automated deep learning based markerless motion capture workflow and evaluated its performance against marker-based motion capture during overground running, walking and counter movement jumping. Multi-view high speed (200 Hz) image data were collected concurrently with marker-based motion capture (criterion data), permitting a direct comparison between methods. Lower limb kinematic data for 15 participants were computed using 2D pose estimation, our 3D fusion process and OpenSim based inverse kinematics modelling. Results demonstrated high levels of agreement for lower limb joint angles, with mean differences ranging "0.1° - 10.5° for hip (3 DoF) joint rotations, and 0.7° - 3.9° for knee (1 DoF) and ankle (2 DoF) rotations. These differences generally fall within the documented uncertainties of marker-based motion capture, suggesting that our markerless approach could be used for appropriate biomechanics applications. We used an open-source, modular and customisable workflow, allowing for integration with other popular biomechanics tools such as OpenSim. By developing open-source tools, we hope to facilitate the democratisation of markerless motion capture technology and encourage the transparent development of markerless methods. This presents exciting opportunities for biomechanics researchers and practitioners to capture large amounts of high quality, ecologically valid data both in the laboratory and in the wild.


Subject(s)
Knee Joint , Movement , Humans , Workflow , Biomechanical Phenomena , Motion
6.
J R Soc Interface ; 19(191): 20220035, 2022 06.
Article in English | MEDLINE | ID: mdl-35765807

ABSTRACT

Understanding the mechanics of torque production about the ankle during accelerative gait is key to designing effective clinical and rehabilitation practices, along with developing functional robotics and wearable assistive technologies. We aimed to explore how torque and work about the ankle is produced as walking acceleration increases from 0 to 100% maximal acceleration. We hypothesized that as acceleration increased, greater work about the ankle would not be solely due to ramping up plantar flexor torque, and instead would be a product of adjustments to relative timing of ankle torque and angular displacement. Fifteen healthy participants performed walking without acceleration (constant speed), as well as low, moderate and maximal accelerations, while motion capture and ground reaction force data were recorded. We employed vector coding in a novel application to overcome limitations of previously employed evaluation methods. As walking acceleration increased, there was reduced negative work and increased positive work about the ankle. Furthermore, early stance dorsiflexion had reducing plantar flexor torque due to delayed plantar flexor torque onset as acceleration increased, while mid-stance ankle plantar flexor torque was substantially increased with minimal ankle dorsiflexion, irrespective of acceleration magnitude. Assistive devices need to account for these changes during accelerative walking to facilitate functional gait.


Subject(s)
Ankle , Walking , Acceleration , Biomechanical Phenomena , Humans , Torque
7.
PeerJ ; 10: e12995, 2022.
Article in English | MEDLINE | ID: mdl-35237469

ABSTRACT

BACKGROUND: Markerless motion capture has the potential to perform movement analysis with reduced data collection and processing time compared to marker-based methods. This technology is now starting to be applied for clinical and rehabilitation applications and therefore it is crucial that users of these systems understand both their potential and limitations. This literature review aims to provide a comprehensive overview of the current state of markerless motion capture for both single camera and multi-camera systems. Additionally, this review explores how practical applications of markerless technology are being used in clinical and rehabilitation settings, and examines the future challenges and directions markerless research must explore to facilitate full integration of this technology within clinical biomechanics. METHODOLOGY: A scoping review is needed to examine this emerging broad body of literature and determine where gaps in knowledge exist, this is key to developing motion capture methods that are cost effective and practically relevant to clinicians, coaches and researchers around the world. Literature searches were performed to examine studies that report accuracy of markerless motion capture methods, explore current practical applications of markerless motion capture methods in clinical biomechanics and identify gaps in our knowledge that are relevant to future developments in this area. RESULTS: Markerless methods increase motion capture data versatility, enabling datasets to be re-analyzed using updated pose estimation algorithms and may even provide clinicians with the capability to collect data while patients are wearing normal clothing. While markerless temporospatial measures generally appear to be equivalent to marker-based motion capture, joint center locations and joint angles are not yet sufficiently accurate for clinical applications. Pose estimation algorithms are approaching similar error rates of marker-based motion capture, however, without comparison to a gold standard, such as bi-planar videoradiography, the true accuracy of markerless systems remains unknown. CONCLUSIONS: Current open-source pose estimation algorithms were never designed for biomechanical applications, therefore, datasets on which they have been trained are inconsistently and inaccurately labelled. Improvements to labelling of open-source training data, as well as assessment of markerless accuracy against gold standard methods will be vital next steps in the development of this technology.


Subject(s)
Motion Capture , Movement , Humans , Biomechanical Phenomena , Gait , Algorithms
8.
J Sports Sci ; 40(10): 1191-1197, 2022 May.
Article in English | MEDLINE | ID: mdl-35356858

ABSTRACT

The backward double integration method uses one force plate and could calculate jump height for countermovement jumping, squat jumping and drop jumping by analysing the landing phase instead of the push-off phase. This study compared the accuracy and variability of the forward double integration (FDI), backwards double integration (BDI) and Flight Time + Constant (FT+C) methods, against the marker-based rigid-body modelling method. It was hypothesised that the jump height calculated using the BDI method would be equivalent to the FDI method, while the FT+C method would have reduced accuracy and increased variability during sub-maximal jumping compared to maximal jumping. Twenty-four volunteers performed five maximal and five sub-maximal countermovement jumps, while force plate and motion capture data were collected. The BDI method calculated equivalent mean jump heights compared to the FDI method, with only slightly higher variability (2-3 mm), and therefore can be used in situations where FDI cannot be employed. The FT+C method was able to account for reduced heel-lift distance, despite employing an anthropometrically scaled heel-lift constant. However, across both sub-maximal and maximal jumping, it had increased variability (1.1 cm) compared to FDI and BDI and should not be used when alternate methods are available.


Subject(s)
Body Height , Posture , Biomechanical Phenomena , Heel , Humans
9.
Int J Sports Physiol Perform ; 17(5): 733-738, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35203053

ABSTRACT

PURPOSE: Periods away from training and competition are necessary for physical and mental restoration in sport. There is limited research investigating changes to physical qualities in rugby league following prolonged breaks. This study aimed to evaluate the effects of the off-season on muscular power in rugby league. In addition, this study aimed to determine whether the type and volume of training players chose to complete had any relationship to feelings of restoration and/or readiness to return to training. METHODS: Twenty professional rugby league players participated in this study. Lower-body muscular power was evaluated using a countermovement jump prior to the off-season and at the recommencement of training. Players completed a questionnaire to identify training and activities completed during the break and to assess feelings of restoration and readiness to commence training. Linear regression was used to estimate the effects of the number of days off on muscular power. One-way repeated-measures analysis of variance was conducted to examine differences in lower-body power throughout the study. Spearman rank order correlation was calculated to determine the relationship between off-season activities and feelings of restoration and readiness. RESULTS: Peak velocity and peak force significantly increased following the off-season break. There were significant relationships between mental restoration and upper-body resistance training, as well as physical restoration and full-body resistance training. CONCLUSIONS: The off-season has a positive effect on a player's ability to generate muscular power. Coaches may want to encourage players to complete resistance training sessions with the aim simply to maintain training load and potentially help players to feel rested.


Subject(s)
Football , Resistance Training , Humans , Muscle Strength , Rugby , Seasons
10.
Int J Sports Physiol Perform ; 17(2): 278-285, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34853184

ABSTRACT

PURPOSE: Tackling is a fundamental skill in collision sports such as rugby league. Given the complexity of tackling and multitude of strength and power variables available for analysis, this study aimed to predict tackle outcomes in professional rugby league based on strength and power principal components (PCs). METHODS: Twenty-eight rugby league players participated in this study. Maximal strength was assessed via 1 repetition maximum on the back squat, bench press, and bench pull. Lower-body vertical and horizontal power were evaluated using a countermovement jump and standing broad jump. A postmatch analysis of 5 National Rugby League matches was conducted to examine tackling outcomes. PC analysis was performed on the strength and power assessments. The first PCs were retained in each analysis, and a series of Spearman rank-order correlations were conducted between the tackle outcomes and the retained PCs. The PCs significantly related to tackle outcomes were included in the multiple regression analyses to estimate their effect on tackle outcomes. RESULTS: Strength PC was a significant predictor of play-the-ball speed in attack, accounting for 54% of the variance. Countermovement jump PC was a significant predictor of postcontact meters, explaining 19% of the variance. CONCLUSIONS: These findings demonstrate that a range of tackle outcomes may be predicted from strength and power components. The coaching staff may choose to develop programs and testing designed to focus on these components, which may further develop players' tackle outcomes during competition.


Subject(s)
Athletic Performance , Football , Humans , Muscle Strength , Rugby
11.
J Strength Cond Res ; 36(10): 2853-2861, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-33470597

ABSTRACT

ABSTRACT: Redman, KJ, Wade, L, Whitley, R, Connick, MJ, Kelly, VG, and Beckman, EM. The relationship between match tackle outcomes and muscular strength and power in professional rugby league. J Strength Cond Res 36(10): 2853-2861, 2022-Tackling is a fundamental skill in collision sports, such as rugby league. Match success is largely dependent on a player's ability to complete tackles and tolerate physical collisions. High levels of strength and power are key physical qualities necessary for effective tackling because players are required to generate large forces while pushing and pulling their opponents. The aim of this study was to examine the relationship between tackle outcomes and strength and power qualities in professional rugby league. Fourteen rugby league players participated in this study. Maximal strength was assessed through 1 repetition maximum on the back squat, bench press, and bench pull. Lower-body vertical and horizontal powers were evaluated using a countermovement jump and standing broad jump (SBJ), respectively. Upper-body power was assessed on a plyometric push-up (PPU). Postmatch analysis of 5 National Rugby League matches was conducted to examine tackling outcomes. A series of Spearman's rank-order correlations were used to assess the relationship among match tackle outcomes and strength and power variables. Significant associations were observed between play-the-ball speed and SBJ peak power (rs = -0.74, p = 0.003), postcontact metres and PPU peak power (rs = 0.77, p = 0.002), losing the play-the-ball contest in defence with SBJ distance (rs = 0.70, p = 0.006), and ineffective tackles with PPU concentric impulse (rs = 0.70, p = 0.007). These results suggest the development and maintenance of full-body power to enhance the likelihood of positive tackle outcomes during professional rugby league match-play.


Subject(s)
Athletic Performance , Football , Humans , Muscle Strength , Rugby
12.
Sci Rep ; 11(1): 20673, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667207

ABSTRACT

Human movement researchers are often restricted to laboratory environments and data capture techniques that are time and/or resource intensive. Markerless pose estimation algorithms show great potential to facilitate large scale movement studies 'in the wild', i.e., outside of the constraints imposed by marker-based motion capture. However, the accuracy of such algorithms has not yet been fully evaluated. We computed 3D joint centre locations using several pre-trained deep-learning based pose estimation methods (OpenPose, AlphaPose, DeepLabCut) and compared to marker-based motion capture. Participants performed walking, running and jumping activities while marker-based motion capture data and multi-camera high speed images (200 Hz) were captured. The pose estimation algorithms were applied to 2D image data and 3D joint centre locations were reconstructed. Pose estimation derived joint centres demonstrated systematic differences at the hip and knee (~ 30-50 mm), most likely due to mislabeling of ground truth data in the training datasets. Where systematic differences were lower, e.g., the ankle, differences of 1-15 mm were observed depending on the activity. Markerless motion capture represents a highly promising emerging technology that could free movement scientists from laboratory environments but 3D joint centre locations are not yet consistently comparable to marker-based motion capture.


Subject(s)
Movement/physiology , Algorithms , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Female , Gait/physiology , Humans , Knee Joint/physiology , Lower Extremity/physiology , Male , Motion , Running/physiology , Walking/physiology
13.
PeerJ ; 9: e10623, 2021.
Article in English | MEDLINE | ID: mdl-33569248

ABSTRACT

Clinical assessment of spinal impairment in Axial Spondyloarthritis is currently performed using the Bath Ankylosing Spondylitis Metrological Index (BASMI). Despite being appreciated for its simplicity, the BASMI index lacks sensitivity and specificity of spinal changes, demonstrating poor association with radiographical range of motion (ROM). Inertial measurement units (IMUs) have shown promising results as a cost-effective method to quantitatively examine movement of the human body, however errors due to sensor angular drift have limited their application to a clinical space. Therefore, this article presents a wearable sensor protocol that facilitates unrestrained orientation measurements in space while limiting sensor angular drift through a novel constraint-based approach. Eleven healthy male participants performed five BASMI-inspired functional movements where spinal ROM and continuous kinematics were calculated for five spine segments and four spinal joint levels (lumbar, lower thoracic, upper thoracic and cervical). A Bland-Altman analysis was used to assess the level of agreement on range of motion measurements, whilst intraclass correlation coefficient (ICC), standardised error measurement, and minimum detectable change (MDC) to assess relative and absolute reliability. Continuous kinematics error was investigated through root mean square error (RMSE), maximum absolute error (MAE) and Spearman correlation coefficient (ρ). The overall error in the measurement of continuous kinematic measures was low in both the sagittal (RMSE = 2.1°), and frontal plane (RMSE = 2.3°). ROM limits of agreement (LoA) and minimum detectable change were excellent for the sagittal plane (maximum value LoA 1.9° and MDC 2.4°) and fair for lateral flexion (overall value LoA 4.8° and MDC 5.7°). The reliability analysis showed excellent level of agreement (ICC > 0.9) for both segment and joint ROM across all movements. The results from this study demonstrated better or equivalent accuracy than previous studies and were considered acceptable for application in a clinical setting. The protocol has shown to be a valuable tool for the assessment of spinal ROM and kinematics, but a clinical validation study on Axial Spondyloarthritis patients is required for the development and testing of a novel mobility index.

14.
J Appl Physiol (1985) ; 128(3): 596-603, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32078467

ABSTRACT

Previous research has demonstrated that during submaximal jumping humans prioritize reducing energy consumption by minimizing countermovement depth. However, sometimes movement is constrained to a nonpreferred pattern, and this requires adaptation of neural control that accounts for complex interactions between muscle architecture, muscle properties, and task demands. This study compared submaximal jumping with either a preferred or a deep countermovement depth to examine how joint and muscle mechanics are integrated into the adaptation of coordination strategies in the deep condition. Three-dimensional motion capture, two force plates, electromyography, and ultrasonography were used to examine changes in joint kinetics and kinematics, muscle activation, and muscle kinematics for the lateral gastrocnemius and soleus. Results demonstrated that a decrease in ankle joint work during the deep countermovement depth was due to increased knee flexion, leading to unfavorably short biarticular muscle lengths and reduced active fascicle length change during ankle plantar flexion. Therefore, ankle joint work was likely decreased because of reduced active fascicle length change and operating position on the force-length relationship. Hip joint work was significantly increased as a result of altered muscle activation strategies, likely due to a substantially greater hip extensor muscle activation period compared with plantar flexor muscles during jumping. Therefore, coordination strategies at individual joints are likely influenced by time availability, where a short plantar flexor activation time results in dependence on muscle properties, instead of simply altering muscle activation, while the longer time for contraction of muscles at the hip allows for adjustments to voluntary neural control.NEW & NOTEWORTHY Using human jumping as a model, we show that adapting movement patterns to altered task demands is achieved differently by muscles across the leg. Because of proximal-to-distal sequencing, distal muscles (i.e., plantar flexors) have reduced activation periods and, as a result, rely on muscle contractile properties (force-length relationship) for adjusting joint kinetics. For proximal muscles that have greater time availability, voluntary activation is modulated to adjust muscle outputs.


Subject(s)
Muscle Contraction , Tendons , Ankle Joint , Biomechanical Phenomena , Electromyography , Humans , Muscle, Skeletal
15.
Scand J Med Sci Sports ; 30(1): 31-37, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31544260

ABSTRACT

Laboratory methods that are required to calculate highly precise jump heights during experimental research have never been sufficiently compared and examined. Our first aim was to compare jumping outcome measures of the same jump, using four different methods (double integration from force plate data, rigid-body modeling from motion capture data, marker-based video tracking, and a hybrid method), separately for countermovement and squat jumps. Additionally, laboratory methods are often unsuitable for field use due to equipment or time restrictions. Therefore, our second aim was to improve an additional field-based method (flight-time method), by combining this method with an anthropometrically scaled constant. Motion capture and ground reaction forces were used to calculate jump height of twenty-four participants who performed five maximal countermovement jumps and five maximal squat jumps. Within-participant mean and standard deviation of jump height, flight distance, heel-lift, and take-off velocity were compared for each of the four methods. All four methods calculated countermovement jump height with low variability and are suitable for research applications. The double integration method had significant errors in squat jump height due to integration drift, and all other methods had low variability and are therefore suitable for research applications. Rigid-body modeling was unable to determine the position of the center of mass at take-off in both jumping movements and should not be used to calculate heel-lift or flight distance. The flight-time method was greatly improved with the addition of an anthropometrically scaled heel-lift constant, enabling this method to estimate jump height and subsequently estimate power output in the field.


Subject(s)
Exercise Test/methods , Models, Theoretical , Movement , Biomechanical Phenomena , Female , Heel , Humans , Male , Video Recording
16.
J Exp Biol ; 222(Pt 2)2019 01 16.
Article in English | MEDLINE | ID: mdl-30651318

ABSTRACT

Muscle contractile mechanics induced by the changing demands of human movement have the potential to influence our movement strategies. This study examined fascicle length changes of the triceps surae during jumping with added mass or increasing jump height to determine whether the chosen movement strategies were associated with relevant changes in muscle contractile properties. Sixteen participants jumped at sub-maximal and maximal intensities while total net work was matched via two distinct paradigms: (1) adding mass to the participant or (2) increasing jump height. Electromyography (EMG) and ultrasound analyses were performed to examine muscle activation, fascicle length and fascicle velocity changes of the triceps surae during jumping. Integrated EMG was significantly higher in the added mass paradigm with no difference in mean or maximal EMG, indicating that the muscle was activated for a significantly longer period of time but not activated to a greater intensity. Fascicle shortening velocity was slower with added mass compared than with increasing jump height; therefore, intrinsic force-velocity properties probably enabled increased force production. Improved fascicle contractile mechanics paired with a longer activation period probably produced a consistently larger fascicle force, enabling a greater impulse about the ankle joint. This may explain why previous research found that participants used an ankle-centred strategy for work production in the added mass paradigm and not in the jump height paradigm. The varied architecture of muscles within the lower limb may influence which muscles we choose to employ for work production under different task constraints.


Subject(s)
Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Adult , Humans , Male , Queensland , Young Adult
17.
Sci Rep ; 8(1): 2300, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396499

ABSTRACT

The preferred movement strategies that humans choose to produce work for movement are not fully understood. Previous studies have demonstrated an important contribution of elastic energy stored within the Achilles tendon (AT) during jumping. This study aimed to alter energy available for storage in the AT to examine changes in how jumpers distribute work among lower limb joints. Participants (n = 16) performed maximal and sub-maximal jumps under two paradigms, matched for increasing total work output by manipulating jump height or adding body mass. Motion capture and ground reaction force data were combined in an inverse dynamics analysis to compute ankle, knee and hip joint kinetics. Results demonstrated higher peak moments about the ankle joint with added body mass (+26 Nm), likely resulting in additional energy storage in the AT. Work at the ankle joint increased proportionally with added mass, maintaining a constant contribution (~64%) to total work that was not matched with increasing jump height (-14%). This implies greater energy storage and return by the AT with added mass but not with increased height. When total work during jumping is constant but energy stored in tendons is not, humans prioritise the use of stored elastic energy over muscle work.


Subject(s)
Achilles Tendon/physiology , Biomechanical Phenomena , Locomotion , Ankle Joint/physiology , Elasticity , Healthy Volunteers , Hip Joint/physiology , Humans , Knee Joint/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...