Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118814, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32861203

ABSTRACT

An easy and selective method has been developed for the extractive spectrophotometric determination of ruthenium(III) with 4-(4'-flurobenzylideneimino)-3-methyl-5-mercapto-1,2,4-triazole (FBIMMT) as a chelating reagent. The basis of the method is the formation of stable complex of 'soft base' FBIMMT with 'soft acid' ruthenium(III). The reagent FBIMMT in n-butanol easily forms extractable yellow coloured complex with ruthenium(III) in acetate buffer of pH 4.8. The absorbance of [Ru(III)-FBIMMT] complex is measured at 394 nm against the reagent blank. Good linearity range of concentration up to 27.0 µg mL-1 of ruthenium(III) is attained with correlation coefficient R2 = 0.998. The optimum concentration range is 6 to 27.0 µg mL-1 which is deduced by Ringbom's plot. The apparent molar absorptivity found to be 2.75 × 103 L mol-1 cm-1. Some additional characteristics such as limit of detection (LOD = 0.48 µg mL-1), limit of quantification (LOQ = 1.19 µg mL-1), and Sandell's sensitivity (SS = of 0.0367 µg cm-2) are also estimated. The composition of [Ru(III)-FBIMMT] complex has been established from Job's continuous variation method, mole ratio method, and log-log plot method. The specificity towards ruthenium(III) is well studied and appropriate masking agents are applied wherever required to boost it. The intra-day and inter-day precision values are found to be brilliant with % relative standard deviation of 0.52 and 0.68 respectively with % accuracy within the range of 99.00-100. The method is effectively used for determination of ruthenium(III) from water samples, binary and ternary synthetic mixtures, fissium alloy samples and catalyst materials. A scheme for sequential group separation of ruthenium(III), palladium(II) and osmium(VIII) has also been developed. The reproducible results of the present method confirm that the method has a good potential for quantitative determination of ruthenium(III) from various matrices.

2.
Bioorg Chem ; 85: 475-486, 2019 04.
Article in English | MEDLINE | ID: mdl-30776558

ABSTRACT

A series of spirochromenocarbazole tethered 1,2,3-triazoles were synthesized via click chemistry based one-pot, five component reaction between N-propargyl isatins, malononitrile, 4-hydroxycarbazole, aralkyl halides and sodium azide using cellulose supported CuI nanoparticles (Cell-CuI NPs) as the heterogeneous catalyst. Antiproliferative activity of all the synthesized compounds was investigated against panel of cancer cell lines such as MCF-7, MDA-MB-231, HeLa, PANC-1, A-549, and THP-1. Many of the synthesized compounds exhibited good anti-proliferative activity against breast (MCF-7 and MDA-MB-231) and cervical (HeLa) cancer cells with IC50 values less than 10 µM. In case of MCF-7 cells, among the nine compounds that showed good anti-proliferative activity, compounds 6f and 6j were found to be highly potent (IC50 = 2.13 µM and 4.80 µM, respectively). In case of MDA-MB-231, three compounds (6k, 6j and 6s) showed antiproliferative activity amongst which 6k was the most potent one (IC50 = 3.78 µM). On the other hand, in cervical cancer HeLa cells, compounds 6b, 6g, 6s and 6u showed excellent antiproliferative activity (IC50 = 4.05, 3.54, 3.83, 3.35 µM, respectively). All the compounds were found to be nontoxic to the human umbilical vein endothelial cells (HUVECs). AO and EtBr staining and fluorescence microscopy studies of the active compounds (IC50 < 5 µM) suggested that these compounds induce cell death by apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Carbazoles/pharmacology , Spiro Compounds/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Benzopyrans/chemical synthesis , Carbazoles/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Click Chemistry , Drug Screening Assays, Antitumor , Human Umbilical Vein Endothelial Cells , Humans , Molecular Structure , Spiro Compounds/chemical synthesis , Structure-Activity Relationship
3.
Soft Matter ; 14(12): 2339-2345, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29493703

ABSTRACT

Perfluoropolyether tetraol (PFPE tetraol) possesses a hydrophobic perfluoropolyether chain in the backbone and two hydroxyl groups at each chain terminal, which facilitates the formation of hydrogen bonds with water molecules resulting in the formation an extended physical network. About 3 wt% water was required for the formation of the microphase separated physical network of PFPE tetraol. The mechanism responsible for the microphase separation of water clusters in the physical network was studied using a combination of techniques such as NMR spectroscopy, molecular dynamics (MD) simulations and DSC. MD simulation studies provided evidence for the formation of clusters in the PFPE tetraol physical network and the size of these clusters increased gradually with an increase in the extent of hydration. Both MD simulations and NMR spectroscopy studies revealed that these clusters position themselves away from the hydrophobic backbone or vice versa. The presence of intra- and inter-chain aggregation possibility among hydrophilic groups was evident. DSC results demonstrated the presence of tightly and loosely bound water molecules to the terminal hydroxyl groups of PFPE tetraol through hydrogen bonding. The data from all the three techniques established the formation of a physical network driven by hydrogen bonding between the hydrophilic end groups of PFPE tetraol and water molecules. The flexible nature of the PFPE tetraol backbone and its low solubility parameter favour clustering of water molecules at the terminal groups and result in the formation of a gel.

4.
Chempluschem ; 82(2): 280-286, 2017 Feb.
Article in English | MEDLINE | ID: mdl-31961550

ABSTRACT

Three new D-A-π-A metal-free organic dyes based on phenothiazine as a donor (D) and non-conjugated π-spacer were designed and synthesized. The incorporation of different 'internal acceptors' (electron traps) such as benzothiadiazole (BTD), benzotriazole (BTA), and pyridine were shown to allow systematic tuning of the energy levels and the photophysical properties. The AI-1 dye showed lower electronic disorder compared with the other two dyes. The efficiencies achieved with AI-1, AI-2, and AI-3 dyes were 8.5 % (Jsc =15.42 mA cm-2 , Voc =0.78 V, FF=68 %), 7 % (Jsc =12.8 mA cm-2 , Voc =0.78 V, FF=68 %) and 6.7 % (Jsc =11.57 mA cm-2 , Voc =0.82 V, FF=68.26 %), respectively. The incorporation of non-conjugated phenothiazine as a π-spacer in D-A-π-A dyes showed remarkable enhancement in the photovoltaic performance of dye-sensitized solar cell (DSSC) devices. The sealed DSSC devices with iodide/tri-iodide (I- /I3 - )-based liquid electrolyte showed promising stability under ambient conditions.

5.
Carbohydr Polym ; 117: 331-338, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25498643

ABSTRACT

New thermo associating polymers were designed and synthesized by grafting amino terminated poly(ethylene oxide-co-propylene oxide) (PEPO) onto carboxymethyl guar (CMG) and carboxymethyl tamarind (CMT). The grafting was performed by coupling reaction between NH2 groups of PEPO and COOH groups of CMG and CMT using water-soluble EDC/NHS as coupling agents. The grafting efficiency and the temperature of thermo-association, T(assoc) in the copolymer were studied by NMR spectroscopy. The graft copolymers, CMG-g-PEPO and CMT-g-PEPO exhibited interesting thermo-associating behavior which was evidenced by the detailed rheological and fluorescence measurements. The visco-elastic properties (storage modulus, G'; loss modulus, G") of the copolymer solutions were investigated using oscillatory shear experiments. The influence of salt and surfactant on the T(assoc) was also studied by rheology, where the phenomenon of "Salting out" and "Salting in" was observed for salt and surfactant, respectively, which can give an easy access to tunable properties of these copolymers. These thermo-associating polymers with biodegradable nature of CMG and CMT can have potential applications as smart injectables in controlled release technology and as thickeners in cosmetics and pharmaceutical formulations.


Subject(s)
Plant Gums/chemistry , Poloxamer/chemistry , Polymerization , Elasticity , Poloxamer/analogs & derivatives
6.
Phys Chem Chem Phys ; 16(43): 23809-18, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25274072

ABSTRACT

This work reports on linearly polarized photoluminescence and electroluminescence through spontaneous self-assembly of mesogenic polythiophenes under ambient conditions. A systematic structural variation and different alkyl chain lengths lead to three series of closely related mesogenic polythiophenes viz.; TPn, TNn and TVn. Polarized light emitting diodes fabricated from TV12 by solution processing with the configuration of ITO/PEDOT:PSS/Polymer/Al show linearly polarized electroluminescence with a dichroic ratio of 14.32. Spun thin films of TV12 elicited a dichroic ratio of 15.02 in photoluminescence. Studies using a range of techniques such as; atomic force microscopy, grazing incidence X-ray diffraction, fluorescence anisotropy, linear dichroism, fluorescence lifetime and dynamic light scattering reveal that the presence of highly ordered self-assembly was responsible for the dimensional confinement of optoelectronic properties. The ordering in the thin films originates from vinyl groups in the side chains of the TV12 polymer. Further studies on device characteristics show higher charge carrier mobility in polymers with vinyl side chains. Solution processed PLEDs show a maximum brightness of 863 cd m(-2) for the TP12 polymer and TV12 based LEDs show a maximum brightness of 524 cd m(-2).

7.
Phys Chem Chem Phys ; 16(42): 23320-8, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25259763

ABSTRACT

In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.

8.
Macromol Rapid Commun ; 32(8): 637-43, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21480420

ABSTRACT

A highly soluble poly(1,3,4-oxadiazole) (POD) substituted with long alkyl chains was examined for electrochemical fluorescence switching. The high solubility of the polymers enabled a simple fabrication of an electrochemical cell, which showed reversible fluorescence switching between dark (n-doping) and bright (neutral) states with a maximum on/off ratio of 2.5 and a cyclability longer than 1000 cycles. Photochemical cleavage of the oxadiazole in POD allowed photo-patterning of the POD film upon exposure to UV source. The patterned POD films displayed patterned image reversibly under a step potential of +1.8/-1.8 V.


Subject(s)
Electrochemistry/instrumentation , Oxadiazoles/chemistry , Polymers/chemistry , Electrochemistry/methods , Fluorescence
9.
J Am Chem Soc ; 128(25): 8158-9, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16787079

ABSTRACT

A new hydrocarbon-soluble (additive-free) dicarbanionic organolithium initiator, obtained by a simple halogen-lithium exchange reaction (Gilman's reaction) from a diarylhalide containing a side C15 alkyl chain, has been designed and used to initiate the anionic polymerization of butadiene and styrene. The dilithiated species formed afford well-defined poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers with a high percentage of 1,4-microstructure polybutadiene (91%) and excellent mechanical properties, such as ultimate tensile strength higher than 30 MPa and elongation at a break of 1000%. This represents a breakthrough in the synthesis of SBS polymers, one of the most used thermoplastic elastomers.

10.
Biotechnol Prog ; 20(6): 1817-24, 2004.
Article in English | MEDLINE | ID: mdl-15575717

ABSTRACT

Preparation of chemically functionalized biocompatible surfaces is of current interest, with application in the immobilization of various bioactive species such as DNA, enzymes, whole cells, etc. We report herein the one-step synthesis of a self-supporting gold nanoparticle membrane, its surface modification, and application in the immobilization of Candida bombicola (yeast) cells. The gold nanoparticle membrane is prepared by the spontaneous reduction of aqueous chloroaurate ions by a diamine at a liquid-liquid interface. The gold nanoparticles in the polymeric membrane may be capped with octadecylamine (ODA) molecules, thereby rendering the nanoparticle membrane hydrophobic. Exposure of the hydrophobized organic-gold nanoparticle membrane to C. bombicola yeast cells results in their binding to the membrane, possibly through nonspecific interactions such as hydrophobic interactions between the yeast cell walls and the ODA molecules. The enzyme cytochrome P450 present in the yeast cells immobilized on the organic-gold nanoparticle membrane was then used in the transformation of the arachidonic acid (AA) to sophorolipids followed by acid hydrolysis to form 20-hydroxyeicosatetraneoic acid (20-HETE). The organic-gold nanoparticle membrane-C. bombicola bioconjugate could be easily separated from the reaction medium and reused a number of times.


Subject(s)
Candida/cytology , Candida/enzymology , Cell Culture Techniques/methods , Coated Materials, Biocompatible/chemistry , Cytochrome P-450 Enzyme System/metabolism , Gold Colloid/chemistry , Membranes, Artificial , Arachidonic Acid/metabolism , Cells, Immobilized/cytology , Cells, Immobilized/physiology , Cytochrome P-450 Enzyme System/chemistry , Enzymes, Immobilized/chemistry , Lipids/biosynthesis , Nanotubes/chemistry , Nanotubes/ultrastructure
12.
Langmuir ; 20(9): 3717-23, 2004 Apr 27.
Article in English | MEDLINE | ID: mdl-15875405

ABSTRACT

We demonstrate herein the formation of a free-standing gold nanoparticle membrane and its use in the immobilization of the enzyme, pepsin. The nanogold membrane is synthesized by the spontaneous reduction of aqueous chloroaurate ions at the liquid-liquid interface by the bifunctional molecule bis(2-(4-aminophenoxy)ethyl) ether (DAEE) taken in chloroform. This process results in the formation of a robust, malleable free-standing nanogold membrane consisting of gold nanoparticles embedded in a polymeric background. Recognizing that gold nanoparticles are excellent candidates for immobilization of enzymes, we have immobilized pepsin on the nanogold membrane, leading to a new class of biocatalyst. A highlight of the new pepsin-nanogold biocatalyst is the ease with which separation from the reaction medium may be achieved. The catalytic activity of pepsin in the bioconjugate was comparable to that of the free enzyme in solution. The pepsin-nanogold membrane bioconjugate material exhibited excellent biocatalytic activity over 10 successive reuse cycles as well as enhanced pH, temperature, and temporal stability.


Subject(s)
Enzymes, Immobilized/chemistry , Gold/chemistry , Nanostructures/chemistry , Pepsin A/chemistry , Caseins/metabolism , Catalysis , Enzyme Stability , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Pepsin A/metabolism , Spectrum Analysis , Substrate Specificity , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...