Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Pharm Fr ; 79(2): 107-118, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32853575

ABSTRACT

Although in its infancy, when compared with the other sectors, year 2005 marked the rapid evolution of 3 Dimensional printing (3DP) technologies in pharma sector with a huge potential in the dosage form designing and personalisation of the medication. 3DP is an innovative and highly promising way for the instant manufacturing in contrast with the tailored made conventional manufacturing. Various 3DP technologies are categorized into the various areas on the basis of the type of material used, deposition techniques and the solidification/fusion techniques. 3DP technologies have multiple pharmaceutical applications including formulation of the precise and unique dosage forms, medical research, personalization of medicine, tissues engineering and surgical application. In the present article, we have accentuated the comparative merits and demerits of various 3DP technologies used in the pharmaceutical sector. An insight in to the challenges, apropos availability and the choice of the excipients, as well as the printer, regulatory and safety concern of the product is provided.


Subject(s)
Drug Delivery Systems , Pharmacy , Excipients , Precision Medicine , Printing, Three-Dimensional
2.
Indian J Pharm Sci ; 74(3): 189-94, 2012 May.
Article in English | MEDLINE | ID: mdl-23440630

ABSTRACT

The formulations consisting of a hydrophilic and hydrophobic material were investigated for effect on drug-release pattern from the matrices. Gum damar and gum copal being water-insoluble were used to study the efficiency of combined matrices to sustain the release of drug. Hydroxypropyl methylcellulose K100M and diclofenac sodium were used as the hydrophilic material and model drug, respectively. The influence of concentration of hydroxypropyl methylcellulose on drug release pattern of hydrophobic material was determined. The optimum ratio of drug: polymer was found to be 1:1. The hydrophobic:hydrophilic polymer ratio of 75:25 was found to have a similar release pattern as that of marketed formulation. At this ratio, the initial burst-release that occurred in individual hydrophobic matrices was lowered to a great extent. The release of drug was found to follow Higuchi's equation as the concentration of hydrophobic material was increased. The formulations were compared with marketed formulation Voveran SR, and a correlation was drawn accordingly.

3.
Indian J Pharm Sci ; 73(2): 208-15, 2011 Mar.
Article in English | MEDLINE | ID: mdl-22303065

ABSTRACT

Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

SELECTION OF CITATIONS
SEARCH DETAIL
...