Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 13(19): 5329-5337, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32830915

ABSTRACT

The feasibility to convert furan, a direct derivative of furfural, to a mixture of 1,4-butanediol (BDO) and tetrahydrofuran (THF) is demonstrated with industrially acceptable performances using mm-sized pellets of a carbon-supported RePd catalyst for 2000 h of operation. The reaction schemes were unraveled by spiking potential reaction intermediates and a full kinetic model was developed. Finally, we developed a comprehensive process flow scheme that integrates the conversion of furfural to furan, the recovery and purification of furan, its reductive hydration to BDO/THF as well as the recovery and purification of BDO and THF. This process concept appears economically viable at current furfural, BDO and THF market prices.

2.
J Am Chem Soc ; 132(6): 1914-24, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20088557

ABSTRACT

The N,C,N'-bonded arylruthenium 2,2':6',2''-terpyridine (tpy) complex salts [Ru(NCN)(tpy)](Cl) ([1a](Cl), NCN = 2,6-bis[(dimethylamino)methyl]phenyl) and [Ru(N--C--N)(tpy)](PF(6)), ([2a](PF(6)), N--C--N = 2,6-bis(2-pyridyl)phenyl) can be halogenated under very mild conditions by oxidation with copper(II) halogen salts. Halogenation occurs exclusively para to the site of metalation and yields the cations [Ru(4-R-NCN)(tpy)](+) (R = Cl, [1b](+) and R = Br [1c](+)) and [Ru(4-R-N--C--N)(tpy)](+) (R = Cl, [2b](+) and R = Br [2c](+)). In the presence of an excess of oxidant relative to [1a](+), the halogenation reaction follows first order kinetics in the oxidized ruthenium complex. However, by using a small excess of copper(II) compared to [1a](+), dimerization of the complex cation to [{Ru(tpy)}(2)(mu-NCN-NCN)](4+) ([3](4+)) is observed, which obeys second order kinetics. Both halogenation (C-X coupling) and dimerization (C-C coupling) are a result of the unique properties of the ruthenium(III) complexes compared to their parent ruthenium(II) species. According to the nature of the highest occupied spin orbital (HOSO) in DFT calculations the unpaired electron in [1a](2+) and [2a](2+) is partially localized on the para position. The involvement of the cyclometalated ligand in the HOSO is supported by redox data and electronic absorption spectroscopy. The ruthenium(III) species can best be considered a persistent organometallic radical.


Subject(s)
Dimerization , Halogenation , Organometallic Compounds/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Absorption , Electrochemistry , Electrons , Ligands , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet , Substrate Specificity , Time Factors
3.
Inorg Chem ; 48(5): 1887-900, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-19235952

ABSTRACT

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R(1)-tpy)(R(2)-tpy)](2+) (R(1), R(2) = H, CO(2)Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R(1)-N(/\)C(/\)N)(R(2)-tpy)](+) and [Ru(R(1)-C(/\)N(/\)N)(R(2)-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO(2)C-C(/\)N(/\)N)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.


Subject(s)
Carbon/chemistry , Electrons , Nitrogen/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Absorption , Crystallography, X-Ray , Electrochemistry , Ligands , Luminescence , Magnetic Resonance Spectroscopy , Organometallic Compounds/chemical synthesis , Quantum Theory , Temperature
4.
Inorg Chem ; 48(13): 5685-96, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-20507098

ABSTRACT

To investigate the consequences of cyclometalation for electronic communication in dinuclear ruthenium complexes, a series of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) bridged diruthenium complexes was prepared and studied. These complexes have a central tppz ligand bridging via nitrogen-to-ruthenium coordination bonds, while each ruthenium atom also binds either a monoanionic, N,C,N'-terdentate 2,6-bis(2'-pyridyl)phenyl (R-N(wedge)C(wedge)N) ligand or a 2,2':6',2''-terpyridine (tpy) ligand. The N,C,N'-, that is, biscyclometalation, instead of the latter N,N',N''-bonding motif significantly changes the electronic properties of the resulting complexes. Starting from well-known [{Ru(tpy)}(2)(mu-tppz)](4+) (tpy = 2,2':2'',6-terpyridine) ([3](4+)) as a model compound, the complexes [{Ru(R-N(wedge)C(wedge)N)}(mu-tppz){Ru(tpy)}](3+) (R-N(wedge)C(H)(wedge)N = 4-R-1,3-dipyridylbenzene, R = H ([4a](3+)), CO(2)Me ([4b](3+))), and [{Ru(R-N(wedge)C(wedge)N)}(2)(mu-tppz)](2+), (R = H ([5a](2+)), CO(2)Me ([5b](2+))) were prepared with one or two N,C,N'-cyclometalated terminal ligands. The oxidation and reduction potentials of cyclometalated [4](3+) and [5](2+) are shifted negatively compared to non-cyclometalated [3](4+), the oxidation processes being affected more significantly. Compared to [3](4+), the electronic spectra of [5](2+) display large bathochromic shifts of the main MLCT transitions in the visible spectral region with low-energy absorptions tailing down to the NIR region. One-electron oxidation of [3](4+) and [5](2+) gives rise to low-energy absorption bands. The comproportionation constants and NIR band shape correspond to delocalized Robin-Day class III compounds. Complexes [4a](3+) (R = H) and [4b](3+) (R = CO(2)Me) also exhibit strong electronic communication, and notwithstanding the large redox-asymmetry the visible metal-to-ligand charge-transfer absorption is assigned to originate from both metal centers. The potential of the first, ruthenium-based, reversible oxidation process is strongly negatively shifted. On the contrary, the second oxidation is irreversible and cyclometalated ligand-based. Upon one-electron oxidation, a weak and low-energy absorption arises.


Subject(s)
Metals/chemistry , Pyrazines/chemistry , Ruthenium Compounds/chemistry , Ligands , Oxidation-Reduction , Spectroscopy, Near-Infrared
5.
Chem Commun (Camb) ; (19): 1907-9, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17695225

ABSTRACT

Cyclometalated ruthenium complexes of [Ru(C--arrow--N) (N--N--N)] configuration are a promising new class of molecular sensitizers for dye-sensitized solar cells, as a result of their broad and red-shifted visible absorption in comparison to the analogous [Ru(N--N--N)2] type coordinative complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...