Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Oncol ; 2019: 4878547, 2019.
Article in English | MEDLINE | ID: mdl-32082376

ABSTRACT

Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12-15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDH WT; n = 38) and IDH-mutant (IDH MUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDH WT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDH WT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDH MUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDH MUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.

2.
Food Chem ; 190: 276-284, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26212971

ABSTRACT

Gelatine is a component of a wide range of foods. It is manufactured as a by-product of the meat industry from bone and hide, mainly from bovine and porcine sources. Accurate food labelling enables consumers to make informed decisions about the food they buy. Since labelling currently relies heavily on due diligence involving a paper trail, there could be benefits in developing a reliable test method for the consumer industries in terms of the species origin of gelatine. We present a method to determine the species origin of gelatines by peptide mass spectrometry methods. An evaluative comparison is also made with ELISA and PCR technologies. Commercial gelatines were found to contain undeclared species. Furthermore, undeclared bovine peptides were observed in commercial injection matrices. This analytical method could therefore support the food industry in terms of determining the species authenticity of gelatine in foods.


Subject(s)
Gelatin/chemistry , Mass Spectrometry/methods , Pharmaceutical Preparations/chemistry , Polymerase Chain Reaction/methods , Animals , Cattle , Pharmaceutical Preparations/analysis , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...