Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 32(1): 1-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22008728

ABSTRACT

[(11)C]PBR28 binds the 18-kDa Translocator Protein (TSPO) and is used in positron emission tomography (PET) to detect microglial activation. However, quantitative interpretations of signal are confounded by large interindividual variability in binding affinity, which displays a trimodal distribution compatible with a codominant genetic trait. Here, we tested directly for an underlying genetic mechanism to explain this. Binding affinity of PBR28 was measured in platelets isolated from 41 human subjects and tested for association with polymorphisms in TSPO and genes encoding other proteins in the TSPO complex. Complete agreement was observed between the TSPO Ala147Thr genotype and PBR28 binding affinity phenotype (P value=3.1 × 10(-13)). The TSPO Ala147Thr polymorphism predicts PBR28 binding affinity in human platelets. As all second-generation TSPO PET radioligands tested hitherto display a trimodal distribution in binding affinity analogous to PBR28, testing for this polymorphism may allow quantitative interpretation of TSPO PET studies with these radioligands.


Subject(s)
Acetamides/metabolism , Polymorphism, Single Nucleotide , Pyridines/metabolism , Radiopharmaceuticals/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolism , Adult , Amino Acid Substitution/genetics , Binding, Competitive/genetics , Blood Platelets/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Female , Genetic Association Studies , Humans , Isoquinolines/metabolism , Male , Positron-Emission Tomography , Protein Binding , Radioligand Assay , Tritium
3.
J Pharmacol Exp Ther ; 321(3): 1032-45, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17327487

ABSTRACT

6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.


Subject(s)
Benzazepines/pharmacology , Brain/drug effects , Histamine Antagonists/pharmacology , Niacinamide/analogs & derivatives , Nootropic Agents/pharmacology , Receptors, Histamine H3/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Benzazepines/metabolism , Benzazepines/pharmacokinetics , Binding, Competitive , Brain/metabolism , Brain/pathology , Cell Line , Dogs , Histamine Agonists/metabolism , Histamine Agonists/pharmacokinetics , Histamine Agonists/pharmacology , Histamine Antagonists/metabolism , Histamine Antagonists/pharmacokinetics , Humans , Male , Maze Learning/drug effects , Mice , Middle Aged , Neurotransmitter Agents/metabolism , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Niacinamide/pharmacology , Nootropic Agents/metabolism , Nootropic Agents/pharmacokinetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Histamine H3/analysis , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL