Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Diabetes Metab Disord ; 23(1): 603-617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932863

ABSTRACT

Objectives: Diabetes has become a leading cause of mortality in both developed and developing countries, impacting a growing number of individuals worldwide. As the prevalence of the disease continues to rise, researchers have diligently worked towards developing accurate diabetes prediction models. The primary aim of this study is to utilize a diverse set of machine learning algorithms to detect the presence of diabetes, particularly in females, at an early stage. By leveraging these methods, this research seeks to provide physicians with valuable tools to identify the disease early, enabling timely interventions and improving patient outcomes. Methods: In this study, some state-of-the-art machine learning techniques, such as random forest classifiers with gridsearchCV, XGBoost, NGBoost, Bagging, LightGBM, and AdaBoost classifiers, were employed. These models were chosen as the base layer of our proposed stacked ensemble model because of their high accuracy. Before feeding the data into the models, the dataset was preprocessed to ensure optimal performance and obtain improved results. Results: The accuracy achieved in this study was 92.91%, which demonstrates its competitiveness with the existing approaches. Moreover, the utilization of the Shapley additive explanation (SHAP) facilitated the interpretation of machine learning models. Conclusion: We anticipate that these findings will be beneficial to healthcare providers, stakeholders, students, and researchers involved in diabetes prediction research and development.

2.
Sci Rep ; 14(1): 5297, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438526

ABSTRACT

During the COVID-19 pandemic, there has been a significant increase in the use of internet resources for accessing medical care, resulting in the development and advancement of the Internet of Medical Things (IoMT). This technology utilizes a range of medical equipment and testing software to broadcast patient results over the internet, hence enabling the provision of remote healthcare services. Nevertheless, the preservation of privacy and security in the realm of online communication continues to provide a significant and pressing obstacle. Blockchain technology has shown the potential to mitigate security apprehensions across several sectors, such as the healthcare industry. Recent advancements in research have included intelligent agents in patient monitoring systems by integrating blockchain technology. However, the conventional network configuration of the agent and blockchain introduces a level of complexity. In order to address this disparity, we present a proposed architectural framework that combines software defined networking (SDN) with Blockchain technology. This framework is specially tailored for the purpose of facilitating remote patient monitoring systems within the context of a 5G environment. The architectural design contains a patient-centric agent (PCA) inside the SDN control plane for the purpose of managing user data on behalf of the patients. The appropriate handling of patient data is ensured by the PCA via the provision of essential instructions to the forwarding devices. The suggested model is assessed using hyperledger fabric on docker-engine, and its performance is compared to that of current models in fifth generation (5G) networks. The performance of our suggested model surpasses current methodologies, as shown by our extensive study including factors such as throughput, dependability, communication overhead, and packet error rate.


Subject(s)
Blockchain , Humans , Pandemics , Internet , Monitoring, Physiologic , Software , Patient-Centered Care
SELECTION OF CITATIONS
SEARCH DETAIL
...