Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 37(8): 793-803, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20440535

ABSTRACT

Escherichia coli is one of the most widely used hosts for the production of recombinant proteins, among other reasons because its genetics are far better characterized than those of any other microorganism. To improve the understanding of recombinant protein synthesis in E. coli, the production of a model recombinant protein, beta-galactosidase, was studied in response to the constitutive overexpression of the anaplerotic reaction afforded by PEP carboxylase. To this end, an IPTG wash-in experiment was performed starting from a well-defined steady-state condition for both the wild-type E. coli and a mutant with a defective acetate pathway and a constitutively overexpressed ppc. In order to compare the dynamics of the fluxes over time during the wash-in experiment, a method referred to as transient metabolic flux analysis, which is based on steady-state metabolic flux analysis, was used. This allowed us to track the intracellular changes/fluxes in both strains. It was observed that the flux towards fermentation products was 3.6 times lower in the ppc overexpression mutant compared to the wild-type E. coli. In the former on the other hand, the PPC flux is in general higher. In addition, the flux towards beta-galactosidase was higher (12.4 times), resulting in five times more protein activity. These results indicate that by constitutively overexpressing the anaplerotic ppc gene in E. coli, the TCA cycle intermediates are increasingly replenished. The additional supply of these protein precursors has a positive result on recombinant protein production.


Subject(s)
Acetate Kinase/genetics , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Gene Deletion , Phosphoenolpyruvate Carboxylase/biosynthesis , Pyruvate Oxidase/genetics , beta-Galactosidase/metabolism , Citric Acid Cycle , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Phosphoenolpyruvate Carboxylase/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...