Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(44): 21354-21363, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31674612

ABSTRACT

Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core-shell arrangement of VO2 and amorphous HfO2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V2O3/HfO2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO2 under ambient conditions. Free-standing cubic HfO2, otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV2O7. Variable temperature powder X-ray diffraction demonstrate that the prepared HfV2O7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds.

2.
Sci Rep ; 8(1): 16149, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30385763

ABSTRACT

The significant heat loss and severe thermal fluctuations inherent in steam-assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) impose considerable constraints on well cementing. In order to obtain better energy efficiency and mechanical robustness, there is considerable interest in the development of low-thermal-conductivity cement that can provide a combination of enhanced thermal insulation and mechanical resilience upon thermal cycling. However, the current palette of thermal cements is exceedingly sparse. In this article, we illustrate a method for decreasing the thermal conductivity of cement by inclusion of hydroxyethylcellulose-functionalized halloysite nanotubes. Halloysite/hydroxyethylcellulose inclusions offer an abundance of disparate interfaces and void space that can effectively scatter phonons, thereby bringing about a pronounced reduction of thermal conductivity. The microstructure of the nanocomposite cementitious matrix is strongly modified even as the compositional profile remains essentially unaltered. Modified cement nanocomposites incorporating halloysite nanotubes along with hydroxyethylcellulose in a 8:1 ratio with an overall loading of 2 wt.% exhibit the lowest measured thermal conductivity of 0.212 ± 0.003 W/m.K, which is substantially reduced from the thermal conductivity of unmodified cement (1.252 W/m.K). The ability to substantially decrease thermal conductivity without deleterious modification of mechanical properties through alteration of microstructure, inclusion of encapsulated void spaces, and introduction of multiple phonon-scattering interfaces suggests an entirely new approach to oilwell cementing based on the design of tailored nanocomposites.

3.
Inorg Chem ; 57(10): 5842-5849, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29746109

ABSTRACT

The development of an expanded palette of X-ray phosphors is a critical imperative for applications in medical imaging, radiation detection, and scientific instrumentation. The rational design of X-ray phosphors has been stymied by the absence of fundamental understanding of activation channels, sensitization mechanisms, and recombination pathways induced upon high-energy excitation of luminescent centers. In this article, we describe the preparation of Eu-doped LaOCl nanocrystals based on the condensation of molecular precursors. The synthetic route allows for control of the oxidation state of the incorporated Eu-atoms based on ligand-induced oxidation or reduction of the Eu-precursors. Nanocrystals exhibiting blue and red X-ray excited optical luminescence are developed by tuning the oxidation state of europium ions incorporated within the LaOCl nanocrystal matrix. Pronounced modulation of the intensity of the optical luminescence is evidenced at and near the giant resonance absorption of the host matrix as a result of distinctly divergent recombination channels. Resonant excitation results in recombination via Auger electron ionization and relaxation of a single electron-hole pair, whereas excitation away from the giant resonance results in thermalization of "hot" electron-hole pairs, while launching cascades of energy transfer, excitation, and radiative recombination events at the Eu-luminescent centers. Mechanistic elucidation and the development of a generalizable synthetic route starting from molecular precursors paves the way to an expanded palette of X-ray phosphors.

4.
Sci Rep ; 7(1): 14711, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116172

ABSTRACT

The marshy water-saturated soil typical of the sub-Arctic represents a considerable impediment to the construction of roads, thereby greatly hindering human habitation and geological excavation. Muskeg, the native water-laden topsoil characteristic of the North American sub-Arctic, represents a particularly vexing challenge for road construction. Muskeg must either be entirely excavated, or for direct construction on muskeg, a mix of partial excavation and gradual compaction with the strategic placement of filling materials must be performed. Here, we demonstrate a novel and entirely reversible geopolymerization method for reinforcing muskeg with wood fibers derived from native vegetation with the addition of inorganic silicate precursors and without the addition of extraneous metal precursors. A continuous siloxane network is formed that links together the muskeg, wood fibers, and added silicates yielding a load-bearing and low-subsidence composite. The geopolymerization approach developed here, based on catalyzed formation of a siloxane network with further incorporation of cellulose, allows for an increase of density as well as compressive strength while reducing the compressibility of the composite.

5.
Nat Commun ; 8: 15316, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28497788

ABSTRACT

High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.

6.
Nanoscale ; 8(2): 979-86, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26661920

ABSTRACT

Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

7.
Chem Sci ; 7(8): 4930-4939, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155141

ABSTRACT

There has been intense interest in stabilizing the tetragonal phase of HfO2 since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO2 has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO2 is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO2 ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO2 nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO2 while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...