Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 111(19): 5204-11, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17439278

ABSTRACT

The pH-dependent phase behavior and hydroxide-ion adsorption ability of a series of (reduced) carbohydrate-based gemini surfactants were studied between pH 2 and 12. Static and dynamic light scattering were employed to address transitions in the aggregate morphologies and cryo-electron microscopy was used to provide further evidence for the morphologies present in solution. Changes in aggregate structure as a result of a change in solution pH and an accompanying change in protonation state or a change in molecular structure can be rationalized in terms of the variations in the packing parameter. In this paper we have focused our attention on the size of the carbohydrate moiety, the carbohydrate stereochemistry and the nature of the spacer (hydrophobic vs hydrophilic). At near neutral pH, most of the gemini surfactants form vesicles. Upon lowering of the pH, the vesicles undergo a transition toward wormlike micelles followed by a transition to spherical micelles. Upon increasing the solution pH, flocculation occurs due to charge neutralization followed at still higher pH by redispersion and charge reversal of the vesicles through the specific adsorption of hydroxide ions to the vesicular surface. Upon decreasing head group size at constant, but low, degrees of protonation, the packing parameter has a tendency to become larger than one resulting in the formation of inverted phases. Upon further decrease in the head group size, oil droplets are observed. In case of a hydrophobic spacer, the carbohydrate stereochemistry affects the pH of the transitions, but not the type of the transitions. By contrast, for a hydrophilic spacer, the pH of the transitions remains unaffected. Adsorption of hydroxide ions at basic pH follows similar trends, but was only found for vesicles and oil droplets. The large range of structural variations that we have examined allows a better understanding of the requirements for the phase transitions for carbohydrate-based gemini surfactants as well as for the physisorption of hydroxide ions to interfaces in general.

2.
J Phys Chem B ; 110(43): 21694-700, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064128

ABSTRACT

The phase behavior of a series of carbohydrate-based gemini surfactants with varying spacer lengths was studied using static and dynamic light scattering between pH 2 and 12. Cryo-electron microscopy pictures provide evidence for the different morphologies present in solution. The spacer length of the gemini surfactants was varied from two to 12 methylene units. At near neutral pH, spherical vesicles were obtained for gemini surfactants with a spacer shorter than 10 methylene units, whereas nonspherical vesicles were obtained for spacer lengths of 10 and 12. Upon decreasing the pH, the vesicles underwent transitions toward worm-like micelles and spherical micelles for a spacer length of six and larger, whereas for shorter spacers, these transitions are not observed. For the shortest spacer at low pH, perforated vesicles are observed, and vesicles built from the gemini surfactant with a spacer of four methylene units only underwent a transition toward worm-like micelles. Upon increasing the pH to slightly basic values, flocculation followed by redispersion upon charge reversal was observed up to a spacer length of eight methylene units. The redispersal is explained by hydroxide-ion binding to the uncharged vesicular surface. By contrast, vesicles formed from the gemini surfactants with 10 and 12 methylene units only undergo a transition toward inverted phases. The observations can be understood in terms of the packing parameter.

3.
J Mol Med (Berl) ; 84(9): 774-84, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16761143

ABSTRACT

In this study, the in vitro and in vivo transfection capacity of novel pH-sensitive sugar-based gemini surfactants was investigated. In an aqueous environment at physiological pH, these compounds form bilayer vesicles, but they undergo a lamellar-to-micellar phase transition in the endosomal pH range as a consequence of an increased protonation state. In the same way, lipoplexes made with these amphiphiles exhibit a lamellar morphology at physiological pH and a non-lamellar phase at acidic pH. In this study, we confirm that the gemini surfactants are able to form complexes with plasmid DNA at physiological pH and are able to transfect efficiently CHO cells in vitro. Out of the five compounds tested here, two of these amphiphiles, GS1 and GS2, led to 70% of transfected cells with a good cell survival. These two compounds were tested further for in vivo applications. Because of their lamellar organisation, these lipoplexes exhibited a good colloidal stability in salt and in serum at physiological pH compatible with a prolonged stability in vivo. Indeed, when injected intravenously to mice, these stable lipoplexes apparently did not substantially accumulate, as inferred from the observation that transfection of the lungs was not detectable, as examined by in vivo bioluminescence. This potential of avoiding 'preliminary capture' in the lungs may, thus, be further exploited in developing devices for specific targeting of gemini lipoplexes.


Subject(s)
Genetic Therapy , Polysaccharides/metabolism , Surface-Active Agents/metabolism , Transfection/methods , Animals , CHO Cells , Colloids , Cricetinae , Cricetulus , Endocytosis/drug effects , Genetic Therapy/methods , Hydrogen-Ion Concentration , Liposomes , Male , Mice , Mice, Inbred BALB C , Polysaccharides/chemistry , Sodium Chloride/pharmacology , Surface-Active Agents/chemistry
4.
Langmuir ; 22(6): 2558-68, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16519455

ABSTRACT

Sugar-based gemini surfactants (GSs) display rich pH-dependent phase diagrams and are considered to be promising candidates as gene- and drug-delivery vehicles for biomedical applications. Several sugar-based GSs form vesicles around neutral pH. The vesicular dispersions undergo transitions toward wormlike micelles and spherical micelles at acidic pH, whereas flocculation followed by redispersion upon charge reversal is observed at basic pH. The influence of various amounts of the double-tailed phospholipids DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and of the single-tailed surfactants lyso-PC (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine) and OTAC (octadecyltrimethylammonium chloride) on the phase behavior of GS1 (1,8-bis(N-octadec-9-yl-1-deoxy-D-glucitol-1-ylamino)3,6-dioxaoctane) was determined as a function of pH, in water and in water at physiological ionic strength. The pH corresponding to the phase transitions and the characteristics of the aggregates were determined by means of a combination of physical techniques: static and dynamic light scattering (SLS and DLS), fluorescence spectroscopy, cryo-TEM and diffusion- and (31)P NMR. The results show that the additives affect the phase behavior of the GS1 dispersions in a pH-dependent fashion. In the presence of double-tailed phospholipids, a higher degree of protonation of GS1 must be reached to observe micelle formation, whereas single-tailed surfactants affect these transitions only slightly. In the presence of increasing amounts of lyso-PC, the pH range of flocculation becomes more narrow, indicating the increased hydration of the vesicles. The pH of redispersion after charge reversal is particularly sensitive to the presence of positively charged additives. It is suggested that the cationic headgroups disturb the hydrogen-bond structure of water at the vesicular surface, hampering OH(-) binding. The effect of an increase in ionic strength to physiological values is found to be modest, except for the dispersions containing the positively charged additives.

5.
J Am Chem Soc ; 127(29): 10420-9, 2005 Jul 27.
Article in English | MEDLINE | ID: mdl-16028956

ABSTRACT

A detailed physicochemical study is presented on a new class of cationic amphiphiles, Sunfish amphiphiles, recently designed, synthesized, and tested for gene delivery. These materials have two hydrophobic tails, connected to the cationic pyridinium headgroup at the 1- and 4-positions. Two extreme morphologies can be visualized, i.e. one by back-folding involving association of both tails at one side of the pyridinium ring and one by independent unfolding of the tails, the two molecular geometries leading to considerable differences in the aggregate morphology. The behavior of six members of the Sunfish family in mixtures with DOPE, applying different conditions relevant for transfection, has been studied by a combination of techniques (DLS, DSC, NMR, SAXS, Cryo-TEM, fluorescence, etc.). The effects of structural parameters such as the presence of unsaturation in the tails and length of the alkyl chains on the properties of the aggregates have been assessed. A correlation of these structural data with cellular transfection efficiencies reveals that the highest transfection efficiency is obtained with those amphiphiles that are easily hydrated, form fluid aggregates, and undergo a transition to the inverted hexagonal phase in the presence of plasmid DNA (p-DNA) at physiological ionic strength.


Subject(s)
DNA/chemistry , Liposomes/chemistry , Phosphatidylethanolamines/chemistry , Transfection/methods , Animals , COS Cells , Cations , Chlorocebus aethiops , DNA/administration & dosage , Liposomes/administration & dosage , Nuclear Magnetic Resonance, Biomolecular , Picolines/chemistry , Water/chemistry
6.
Biophys J ; 88(3): 2104-13, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15613636

ABSTRACT

Two double-tailed pyridinium cationic amphiphiles, differing only in the degree of unsaturation of the alkyl chains, have been selected for a detailed study of their aggregation behavior, under conditions employed for transfection experiments. The transfection efficiencies of the two molecules are remarkably different, especially when combined with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid. The phase behavior of the cationic amphiphile/DOPE mixtures have been studied using (31)P- and (2)H-NMR (on deuterated cationic amphiphiles) as main techniques, to monitor independently the behavior of the two components. In water, the lamellar organization is dominant for both the surfactants in their mixtures with the helper lipid. In HEPES saline buffer (HBS), the mixtures of the unsaturated surfactant form inverted phases and, in particular, stable H(II) phases for DOPE contents > or =30 mol %. By contrast, the saturated surfactant does not form homogeneously mixed inverted phases in mixtures with DOPE at room temperature. However, mixed inverted phases are observed for this system at higher temperatures and, after mixing has been achieved by heating, the metastable mixed phases remain present for several hours at 5 degrees C. At 35 degrees C the dominant phase is the cubic phase. The lipoplex composed of equimolar mixtures of the unsaturated surfactant with DOPE and plasmid DNA was found to be organized in highly curved bilayers.


Subject(s)
Drug Carriers/chemistry , Gene Targeting/methods , Lipid Bilayers/chemistry , Liposomes/chemistry , Phosphatidylethanolamines/chemistry , Plasmids/chemistry , Pyridinium Compounds/chemistry , Transfection/methods , Drug Carriers/analysis , Drug Delivery Systems/methods , Ions , Liposomes/analysis , Phosphatidylethanolamines/analysis , Plasmids/administration & dosage , Plasmids/analysis , Pyridinium Compounds/analysis
7.
Carbohydr Res ; 339(6): 1147-53, 2004 Apr 28.
Article in English | MEDLINE | ID: mdl-15063204

ABSTRACT

A number of novel nonionic bolaform amphiphiles with nonidentical aldityl head groups, 1-(1-deoxy-D-galactitol-1-ylamino)-6-(1-deoxy-D-glucitol-1-ylamino)hexane, 1-(1-deoxy-D-mannitol-1-ylamino)-6-(1-deoxy-D-glucitol-1-ylamino)hexane, and 1-(1-deoxy-D-galactitol-1-ylamino)-6-(1-deoxy-D-mannitol-1-ylamino)hexane were synthesized by two successive reductive aminations involving 1,6-diaminohexane (1) and the appropriate D-aldohexoses (D-glucose, D-mannose, and D-galactose) using 5% Pd on carbon as the catalyst. Typical reaction conditions were 40 degrees C, 4MPa hydrogen and a reaction time of 4.5 h. The compounds were isolated as white solids in yields ranging from 39% to 72%. The intermediate aminoalditols, 1-(1-deoxy-D-glucitol-1-ylamino)-6-aminohexane and 1-(1-deoxy-D-galactitol-1-ylamino)-6-aminohexane were obtained as off-white solids in 80-85% yield. The bolaform amphiphiles containing 1-deoxy-D-glucitol head group(s) showed markedly lower melting points than the compounds with the 1-deoxy-D-mannitol and 1-deoxy-D-galactitol head groups, due to the presence of 1,3-syn interactions within the carbohydrate moiety. The novel bolaform compounds are potential starting materials for the synthesis of a broad range of gemini surfactants with nonidentical, carbohydrate-based head groups.


Subject(s)
Biochemistry/methods , Carbohydrates/chemistry , Peptides/chemical synthesis , Carbon/chemistry , Hydrogen/chemistry , Indicators and Reagents/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Surface-Active Agents/chemistry , Time Factors
8.
Biochim Biophys Acta ; 1660(1-2): 41-52, 2004 Jan 28.
Article in English | MEDLINE | ID: mdl-14757219

ABSTRACT

The positive charge of cationic-lipid/DNA complexes (lipoplexes) renders them highly susceptible to interactions with the biological milieu, leading to aggregation and destabilization, and rapid clearance from the blood circulation. In this study we synthesized and characterized a set of novel amphiphiles, based on N-methyl-4-alkylpyridinium chlorides (SAINTs), to which a PEG moiety is coupled. Plasmids were fully protected in lipoplexes prepared from cationic SAINT-2 lipid and stabilized with SAINT-PEGs. Our results demonstrate that SAINT-PEG stabilization is transient, and permits DNA to be released from these lipoplexes. The rate of SAINT-PEG transfer from lipoplexes to acceptor liposomes was determined by the nature of the lipid anchor. Increased hydrophobicity, by lengthening the alkyl chain, resulted in a decrease of the rate of DNA release from the lipoplexes. Chain unsaturation had the opposite effect. Similarly, the in vitro transfection potency of lipoplexes containing PEG-SAINT derivatives was sensitive to the length and (un)saturation of the alkyl chain. However, the internalization of SAINT-PEG stabilized lipoplexes is determined by their charge, rather than by the concentration of the polymer conjugate. Lipoplexes targeted to cell-surface epithelial glycoprotein 2, by means of a covalently coupled monoclonal antibody, were specifically internalized by cells expressing this antigen.


Subject(s)
DNA Adducts/chemistry , Lipids/chemical synthesis , Polyethylene Glycols/chemistry , Pyridinium Compounds/chemical synthesis , Transfection , Animals , Cations , Gene Targeting , Liposomes , Melanoma, Experimental , Mice , Microscopy, Confocal , Phosphatidylethanolamines/chemistry , Plasmids , Transfection/methods
9.
J Am Chem Soc ; 125(3): 757-60, 2003 Jan 22.
Article in English | MEDLINE | ID: mdl-12526675

ABSTRACT

A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into small globular micelles at even lower pH. In the vesicular pH region, the vesicles are positively charged at pH < 7 and exhibit a good colloidal stability. However, close to pH 7, the vesicles become unstable and rapidly flocculate and eventually sediment out from the solution. We find that the flocculation correlates with low vesicle zeta-potentials and the behavior is thus well predicted by the classical DLVO theory of colloidal stability. Surprisingly, we find that the vesicles are easily redispersed by increasing the pH to above pH 7.5. We show that this is due to a vesicle surface charge reversal resulting in negatively charged vesicles at pH > 7.1. Adsorption, or binding, of hydroxide ions to the vesicular surface is likely the cause for the charge reversal, and a hydroxide ion binding constant is calculated using a Poisson-Boltzmann model.


Subject(s)
Glucose/chemistry , Liposomes/chemistry , Micelles , Surface-Active Agents/chemistry , Cross-Linking Reagents/chemistry , Ethylene Oxide/chemistry , Flocculation , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Membranes/chemistry , Molecular Conformation , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...