Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1291307, 2023.
Article in English | MEDLINE | ID: mdl-38090150

ABSTRACT

Introduction: Kleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental disorder characterized by intellectual disability, infantile hypotonia, severe expressive language delay, and characteristic facial appearance, with a spectrum of other distinct clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals. Methods: This work reports a translational genomic study that applies a multidimensional computational approach for deep variant phenotyping, combining conventional genomic analyses, advanced protein bioinformatics, computational biophysics, biochemistry, and biostatistics-based modeling. We use standard variant annotation, paralog annotation analyses, molecular mechanics, and molecular dynamics simulations to evaluate damaging scores and provide potential mechanisms underlying KMT2C variant dysfunction. Results: We integrated data derived from the structure and dynamics of KMT2C to classify variants into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). When compared with controls, these variants show values reflecting alterations in molecular fitness in both structure and dynamics. Discussion: We demonstrate that our 3D models for KMT2C variants suggest distinct mechanisms that lead to their imbalance and are not predictable from sequence alone. Thus, the missense variants studied here cause destabilizing effects on KMT2C function by different biophysical and biochemical mechanisms which we adeptly describe. This new knowledge extends our understanding of how variations in the KMT2C gene cause the dysfunction of its methyltransferase enzyme product, thereby bearing significant biomedical relevance for carriers of KLEFS2-associated genomic mutations.

2.
iScience ; 26(10): 108040, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37854700

ABSTRACT

Interpreting genetic changes observed in individual patients is a critical challenge. The array of immune deficiency syndromes is typically caused by genetic variation unique to individuals. Therefore, new approaches are needed to interpret functional variation and accelerate genomics interpretation. We constructed the first full-length structural model of human RAG recombinase across four functional states of the recombination process. We functionally tested 182 clinically observed RAG missense mutations. These experiments revealed dysfunction due to recombinase dysfunction and altered chromatin interactions. Structural modeling identified mechanical and energetic roles for each mutation. We built regression models for RAG1 (R2 = 0.91) and RAG2 (R2 = 0.97) to predict RAG activity changes. We applied our model to 711 additional RAG variants observed in population studies and identified a subset that may impair RAG function. Thus, we demonstrated a fundamental advance in the mechanistic interpretation of human genetic variations spanning from rare and undiagnosed diseases to population health.

3.
Comput Struct Biotechnol J ; 21: 4790-4803, 2023.
Article in English | MEDLINE | ID: mdl-37841325

ABSTRACT

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations, which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.

4.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37207265

ABSTRACT

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.

SELECTION OF CITATIONS
SEARCH DETAIL
...