Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35312359

ABSTRACT

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Subject(s)
Bacterial Proteins , Borrelia burgdorferi , Complement C1q , Immune Evasion , Lipoproteins , Lyme Disease , Bacterial Proteins/immunology , Borrelia burgdorferi/immunology , Complement C1q/immunology , Humans , Immunoglobulins/immunology , Lipoproteins/immunology , Lyme Disease/immunology , Lyme Disease/microbiology , Proteome/immunology
2.
PLoS Pathog ; 16(5): e1008423, 2020 05.
Article in English | MEDLINE | ID: mdl-32365143

ABSTRACT

Post-transcriptional regulation via small regulatory RNAs (sRNAs) has been implicated in diverse regulatory processes in bacteria, including virulence. One class of sRNAs, termed trans-acting sRNAs, can affect the stability and/or the translational efficiency of regulated transcripts. In this study, we utilized a collaborative approach that employed data from infection with the Borrelia burgdorferi Tn library, coupled with Tn-seq, together with borrelial sRNA and total RNA transcriptomes, to identify an intergenic trans-acting sRNA, which we designate here as ittA for infectivity-associated and tissue-tropic sRNA locus A. The genetic inactivation of ittA resulted in a significant attenuation in infectivity, with decreased spirochetal load in ear, heart, skin and joint tissues. In addition, the ittA mutant did not disseminate to peripheral skin sites or heart tissue, suggesting a role for ittA in regulating a tissue-tropic response. RNA-Seq analysis determined that 19 transcripts were differentially expressed in the ittA mutant relative to its genetic parent, including vraA, bba66, ospD and oms28 (bba74). Subsequent proteomic analyses also showed a significant decrease of OspD and Oms28 (BBA74) proteins. To our knowledge this is the first documented intergenic sRNA that alters the infectivity potential of B. burgdorferi.


Subject(s)
Borrelia burgdorferi/genetics , RNA, Small Untranslated/metabolism , Tropism/genetics , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/pathogenicity , Gene Expression Regulation, Bacterial/genetics , Gene Library , Genome, Bacterial , Lyme Disease/microbiology , Proteomics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Transcriptome/genetics , Virulence
3.
PLoS Pathog ; 12(1): e1005404, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808924

ABSTRACT

Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.


Subject(s)
Bacterial Proteins/immunology , Borrelia burgdorferi/immunology , Complement Activation/immunology , Complement Pathway, Classical/immunology , Host-Parasite Interactions/immunology , Immune Evasion/immunology , Complement C1/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Immunoprecipitation , Lyme Disease/immunology
4.
Infect Immun ; 83(9): 3693-703, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150534

ABSTRACT

Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1ß1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.


Subject(s)
Adhesins, Bacterial/metabolism , Borrelia burgdorferi/pathogenicity , Lyme Disease/microbiology , Animals , Borrelia burgdorferi/metabolism , Disease Models, Animal , Female , Gene Knockdown Techniques , Immunoblotting , Luminescent Measurements , Lyme Disease/metabolism , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
5.
Biophys J ; 104(7): 1445-55, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23561521

ABSTRACT

Pseudomonas aeruginosa is a major agent of hospital-acquired infections, and a pathogen of immunocompromised, cystic fibrosis and burn patients. It uses a type III secretion system for the injection of toxins directly into host cells, through a translocon assembled in the host cell membrane. The hydrophobic translocator subunits of this system, PopB and PopD, have membrane permeabilizing activity based on previous dye leakage experiments, but little is known about the mechanism of assembly and the pore properties of this translocon. Using electrophysiology, we have observed that an equimolar mixture of PopB and PopD induces current fluctuations in planar lipid bilayers, with a unitary conductance of 57 pS in 1 M KCl and numerous larger conductance levels. The activity depends on voltage magnitude and polarity, and increases with protein concentration and the duration of the voltage step. PopB alone is sufficient for producing current fluctuations. PopD rarely displays any transitions, but accelerates PopB onset of activity. The effects of pH, ionic strength, and lipid composition have also been explored. Our data provide new, to our knowledge, insights into the behavior of PopB and PopD by highlighting similarities with secreted pore-forming peptides, and by suggesting that PopB/PopD may form channels via the toroidal pore model. We believe that the events we report here represent the initial steps of insertion and assembly of these translocators in the membrane.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Electrophysiological Phenomena , Pseudomonas aeruginosa/metabolism , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/toxicity , Bacterial Proteins/chemistry , Bacterial Proteins/toxicity , Guanidine/pharmacology , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Macrophages/drug effects , Membranes, Artificial , Mice , Osmolar Concentration , Porosity , Protein Refolding/drug effects
6.
Methods Mol Biol ; 966: 381-96, 2013.
Article in English | MEDLINE | ID: mdl-23299748

ABSTRACT

Together with patch-clamp, the planar lipid bilayer technique is one of the electrophysiological approaches used to study the biophysical properties of bacterial pore-forming proteins. Electrophysiological studies have provided important insight into the mechanistic details underlying the function of this class of proteins. Although there are different apparatus designs and variations to the process of obtaining channel recordings, the general architecture of a planar lipid bilayer setup involves two compartments filled with an ionic solution and separated by a septum with a micro-aperture, where a phospholipid bilayer is formed, and an amplifier used to clamp the membrane potential and record currents. Bacterial outer membrane porins and translocons, among others, can be reconstituted in this bilayer and their electrophysiology probed in different physicochemical conditions or through functional assays with substrates or potential modulators. This chapter describes specifically the reconstitution of detergent purified outer membrane pore-forming proteins into artificial lipid membranes using a laboratory customized planar lipid bilayer apparatus and the subsequent recording of channel activity under voltage clamp.


Subject(s)
Bacterial Proteins/physiology , Lipid Bilayers , Membrane Potentials
7.
Proteins ; 78(14): 2886-94, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20665474

ABSTRACT

The permeability of the outer membrane of gram-negative bacteria is essentially controlled by pore-forming proteins of the porin family. The trimeric E. coli porin OmpF is assembled as a triple ß-barrel, where each monomer contains a central pore and extracellular loops. Electrophysiological analysis of the behavior of OmpF at acidic pH reveals that the protein undergoes a conformational change leading to the sequential step-wise closure of the three monomers. A previous atomic force microscopy study suggested that the conformational change might be due to a bending of extracellular loops over the pore opening, and loop deletion experiments suggested that loops L1, L7, and L8 are involved. In order to test the hypothesis for loop movement, we engineered a series of double cysteine mutants in loops L1, L6, L7 and L8 in order to create disulfide bonds linking two loops to each other, or the two branches of a loop, or a loop to the ß-barrel. Five out of the six mutants showed the formation of the disulfide bond. However, none of these had an altered response to acidic pH relative to the wildtype channel. Although we cannot dismiss the possibility that the mobility restriction introduced by each disulfide bond was too localized to impact a more global conformational change of the three loops, the fact that all of the different types of disulfide bond tethering were similarly ineffective suggests that the extracellular loops L1, L7, and L8 may not undergo a major acidic-pH induced conformational change leading to channel closure.


Subject(s)
Acids/metabolism , Disulfides/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Porins/chemistry , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Models, Molecular , Mutation/genetics , Porins/genetics , Porins/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...