Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 17(1): 85-99, 2009.
Article in English | MEDLINE | ID: mdl-19644215

ABSTRACT

Megavoltage X-ray sources are commonly used for therapy planning, and knowledge of their spectral distribution is important for accurate dose calculations. There are many methods that could provide reasonable estimations of Megavoltage X-ray spectra, when very accurate attenuation data or at least very good set of initial guesses of the spectra are available. We present here a novel method, which can be used for accurate Megavoltage spectral reconstruction without any prior knowledge of spectral distribution; the method performs well even when the available transmission data are affected by noise. The method is based on a search for a smooth function that minimizes the differences between measured and calculated attenuation data. The algorithm is compared with well-known existing algorithms, using computer simulated data, both error-free and containing added random Gaussian noise. The reconstructed spectra are subsequently used to calculate the transmission through 50 cm of bone, muscle or fat tissue. It is shown that the relative errors in dose calculations, using the spectra reconstructed via this method, are significantly smaller than those obtained via well-established reconstruction algorithms--Truncated Singular Value Decomposition (TSVD) and Expectation Maximization (EM). These results suggest that the novel algorithm might be practical for routine Megavoltage therapy X-ray source calibration.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Radiotherapy, High-Energy/methods , Spectrum Analysis/methods , X-Rays , Computer Simulation , Linear Models , Monte Carlo Method , Normal Distribution
2.
Radiat Oncol ; 1: 36, 2006 Sep 11.
Article in English | MEDLINE | ID: mdl-16965624

ABSTRACT

BACKGROUND: Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. METHODS: Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 x 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. RESULTS: Tumor-base doses ranged from 87.1-102.8 Gy for the BLOKX procedure, and from 335.3-338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. CONCLUSION: The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted.


Subject(s)
Brachytherapy/methods , Choroid Neoplasms/radiotherapy , Melanoma/radiotherapy , Computer Simulation , Dose-Response Relationship, Radiation , Equipment Design , Humans , Lens, Crystalline/radiation effects , Models, Theoretical , Monte Carlo Method , Radiometry/methods , Radiotherapy/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...