Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e99416, 2014.
Article in English | MEDLINE | ID: mdl-24945245

ABSTRACT

We present a simple bench-top method to fabricate enclosed circular channels for biological experiments. Fabricating the channels takes less than 2 hours by using glass capillaries of various diameters (from 100 µm up to 400 µm) as a mould in PDMS. The inner surface of microchannels prepared in this way was coated with a thin membrane of either Matrigel or a layer-by-layer polyelectrolyte to control cellular adhesion. The microchannels were then used as scaffolds for 3D-confined epithelial cell culture. To show that our device can be used with several epithelial cell types from exocrine glandular tissues, we performed our biological studies on adherent epithelial prostate cells (non-malignant RWPE-1 and invasive PC3) and also on breast (non-malignant MCF10A) cells We observed that in static conditions cells adhere and proliferate to form a confluent layer in channels of 150 µm in diameter and larger, whereas cellular viability decreases with decreasing diameter of the channel. Matrigel and PSS (poly (sodium 4-styrenesulphonate)) promote cell adhesion, whereas the cell proliferation rate was reduced on the PAH (poly (allylamine hydrochloride))-terminated surface. Moreover infusing channels with a continuous flow did not induce any cellular detachment. Our system is designed to simply grow cells in a microchannel structure and could be easily fabricated in any biological laboratory. It offers opportunities to grow epithelial cells that support the formation of a light. This system could be eventually used, for example, to collect cellular secretions, or study cell responses to graduated hypoxia conditions, to chemicals (drugs, siRNA, …) and/or physiological shear stress.


Subject(s)
Cell Adhesion/drug effects , Epithelial Cells/cytology , Prostate/cytology , Tissue Engineering , Cell Culture Techniques , Cell Hypoxia/drug effects , Cell Line , Cell Proliferation/drug effects , Collagen/administration & dosage , Drug Combinations , Epithelial Cells/drug effects , Humans , Laminin/administration & dosage , Male , Polyamines/administration & dosage , Prostate/drug effects , Proteoglycans/administration & dosage
2.
Biomaterials ; 34(38): 10099-108, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24060421

ABSTRACT

The behaviour of cancerous epithelial prostatic cells (PC3) growing on polyelectrolytes (PE) coatings was compared to the behaviour of immortalized normal prostatic cells (PNT-2). The cell behaviour was evaluated and quantified in terms of initial cell attachment, growth, metabolic activity, morphometry, adhesion, apoptosis and stress related gene expression. Both the anionic PSS (poly(sodium 4-styrenesulphonate))-terminated surface and cationic PAH (poly(allylamine hydrochloride))-terminated surfaces were not cytotoxic. The initial attachment of cells was better on the PAH-terminated surface compared to fibronectin. However, the proliferation rate of PC3 cells was reduced on the PAH-terminated surface and slightly increased on the PSS coatings. Only PAH prevented the clustering phenotype of PC3 and reduced the number of focal adhesion points as compared to fibronectin or PSS coatings. In contrast, none of the PE surfaces significantly affected the biological responses of PNT-2 cells. PAH-terminating films provide a tool to preferentially modulate the growth of some cancerous phenotypes, in this case as a micro-environment that reduces the growth of metastatic PC3 cells.


Subject(s)
Polymers/chemistry , Polymers/pharmacology , Prostate/pathology , Animals , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Male , Models, Theoretical , Polymers/therapeutic use , Prostatic Neoplasms/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...