Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32437, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933961

ABSTRACT

This study aimed to optimise metal extraction from secondary hazardous sources, such as basic oxygen steelmaking dust (BOS-D). Initially, three batch systems approaches, including bioleaching using Acidithiobacillus ferrooxidans, chemical leaching using choline chloride-ethylene glycol (ChCl-EG) and a combined approach were compared. Then, scaling up was evaluated through a semi-continuous bioleaching column system with varied leachate recirculation over 21 days, focusing on Y, Ce, Nd, Li, Co, Cu, Zn, Mn, and Al. Bioleaching outperformed the control experiments within 3 days in the batch, demonstrating the key role of A. ferrooxidans. Chemical leaching conducted with a solid concentration of 12.5 % (w/v) successfully dissolved over 50 % of all metals within 2 h. For rare earth elements (REE), both bioleaching and hybrid leaching outperformed chemical leaching. However, considering factors such as process duration, overall efficiency, and ease of extraction, chemical leaching was the most effective method. Leachate recirculation reached a plateau after 11 days, resulting in extraction efficiency of 39 % when semi-continuous column set-up was used. Interestingly, variations in recirculation rates did not influence the extraction efficiency. Overall, this study emphasizes the considerable potential of bioleaching for metal recovery, but also highlights the need for further studies for enhancing permeability for percolation methods and optimisation, particularly in parameters such as aeration rate, when transitioning to larger scale systems.

2.
J Environ Manage ; 363: 121350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850901

ABSTRACT

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Subject(s)
Chelating Agents , Edetic Acid , Metals , Chelating Agents/chemistry , Edetic Acid/chemistry , Metals/chemistry , Deep Eutectic Solvents/chemistry , Solvents/chemistry
3.
J Environ Manage ; 358: 120904, 2024 May.
Article in English | MEDLINE | ID: mdl-38643624

ABSTRACT

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.


Subject(s)
Acidithiobacillus , Bioreactors , Metallurgy , Acidithiobacillus/metabolism , Copper , Minerals , Iron Compounds
4.
Chemosphere ; 343: 140244, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758076

ABSTRACT

In this study, the potential of bioleaching to extract valuable metals from industrial by-products, specifically basic oxygen steelmaking dust (BOS-D) and goethite was investigated. These materials are typically discarded due to their high zinc content and lack of efficient regeneration processes. By using Acidithiobacillus ferrooxidans, successful bioleaching of various metals, including heavy metals, critical metals, and rare earth elements was achieved. The Taguchi orthogonal array design was used to optimise the bioleaching process, considering four variables at three different levels. After 14 days, the highest metal extraction for the BOS-D (11.2 mg Zn/g, 3.2 mg Mn/g, 1.6 mg Al/g, 0.0013 mg Y/g, and 0.0026 mg Ce/g) was achieved at 1% solid concentration, 1% energy source concentration, 1% inoculum concentration, and pH 1.5. For goethite, the optimal conditions were 1% solid concentration, 4% energy source concentration, 10% inoculum concentration, and pH 2 resulting in a extraction of 26.6 mg Zn/g, 2.1 mg/g Mn, 1.8 mg Al/g, 0.01 mg Co/g, 0.0022 mg Y/g. These findings are significant, as they demonstrate the potential to extract valuable metals from previously discarded industrial by-products. The extraction of such metals can have substantial economic and environmental implications, while simultaneously reducing waste in the metallurgical industry. Furthermore, the preservation of initial concentration of iron in both BOS-D and goethite residues represents a significant step towards implementing more sustainable industrial practices.

5.
Waste Manag ; 161: 29-42, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863208

ABSTRACT

Inhibitory pathways in dry anaerobic digestion are still understudied and current knowledge on wet processes cannot be easily transferred. This study forced instability in pilot-scale digesters by operating at short retention times (40 and 33 days) in order to understand inhibition pathways over long term operation (145 days). The first sign of inhibition at elevated total ammonia concentrations (8 g/l) was a headspace hydrogen level over the thermodynamic limit for propionic degradation, causing propionic accumulation. The combined inhibitory effect of propionic and ammonia accumulation resulted in further increased hydrogen partial pressures and n-butyric accumulation. The relative abundance of Methanosarcina increased while that of Methanoculleus decreased as digestion deteriorated. It was hypothesized that high ammonia, total solids and organic loading rate inhibited syntrophic acetate oxidisers, increasing their doubling time and resulting in its wash out, which in turn inhibited hydrogenotrophic methanogenesis and shifted the predominant methanogenic pathway towards acetoclastic methanogenesis at free ammonia over 1.5 g/l. C/N increases to 25 and 29 reduced inhibitors accumulation but did not avoid inhibition or the washout of syntrophic acetate oxidising bacteria.


Subject(s)
Ammonia , Hydrogen , Anaerobiosis , Bioreactors/microbiology , Acetates/metabolism , Methane/metabolism
6.
Ind Eng Chem Res ; 61(26): 9218-9233, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35818477

ABSTRACT

The process of sorption enhanced steam methane reforming (SE-SMR) is an emerging technology for the production of low carbon hydrogen. The development of a suitable catalytic material, as well as a CO2 adsorbent with high capture capacity, has slowed the upscaling of this process to date. In this study, to aid the development of a combined sorbent catalyst material (CSCM) for SE-SMR, a novel approach involving quantitative structure-property relationship analysis (QSPR) has been proposed. Through data-mining, two databases have been developed for the prediction of the last cycle capacity (gCO2 /gsorbent) and methane conversion (%). Multitask learning (MTL) was applied for the prediction of CSCM properties. Patterns in the data of this study have also yielded further insights; colored scatter plots were able to show certain patterns in the input data, as well as suggestions on how to develop an optimal material. With the results from the actual vs predicted plots collated, raw materials and synthesis conditions were proposed that could lead to the development of a CSCM that has good performance with respect to both the last cycle capacity and the methane conversion.

7.
Bioresour Technol ; 299: 122681, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31902638

ABSTRACT

Dry digestion is a suitable technology for treating organic wastes with varying composition such as the organic fraction of municipal solids waste. Yet, there is a need for further research to overcome some of the disadvantages associated with the high total solids content of the process. Optimisation of inoculum to substrate ratio, feedstock composition and size, liquid recirculation, bed compaction and use of bulking agents are some of the parameters that need further investigation in batch dry anaerobic digestion, to limit localised inhibition effects and avoid process instability. In addition, further attention on the relation between feedstock composition, organic loading rate and mixing regimes is required for continuous dry anaerobic digestion systems. This paper highlights all the areas where knowledge is scarce and value can be added to increase dry anaerobic digestion performance and expansion.


Subject(s)
Bioreactors , Refuse Disposal , Anaerobiosis , Methane
8.
Sci Total Environ ; 698: 134125, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31783451

ABSTRACT

In 2016, it was estimated that 7.4 million tonnes of plastic waste have been disposed in landfill in Europe. This waste represents an important opportunity for resource recovery through enhanced landfill mining consistent with recent Circular Economy initiatives. However, a recent review found a lack of data describing the degradation of excavated plastic waste and the potential impact on recycling products such as pyrolysis oil. In this study, the physicochemical characteristics of the main plastic types found in landfills and their implications for recovery and recycling were investigated using a combination of scanning electron microscopy energy dispersive spectroscopy (SEM-EDS), attenuated total reflectance Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Loss of gloss was visually detected for the buried plastic waste samples (polyethylene (PE) and polypropylene (PP)) compared to fresh plastic samples. The SEM-EDS analysis further showed that oxygen was the main element related to the plastic surface alteration. The carbonyl index (CI) of plastic samples buried for >10 years was between 1.5 and 2 times higher than <10 years and fresh materials. Similarly, the degree crystallinity of the old samples (>10 years) was 2 times higher than the fresh and < 10 years samples. Based on these findings, tertiary recycling, such as pyrolysis, seems to be a convenient route for upcycling of recovered plastics from municipal solid waste landfills.

9.
Energy Convers Manag ; 163: 507-524, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29725148

ABSTRACT

This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.

10.
Fuel (Lond) ; 184: 780-791, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27857449

ABSTRACT

Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.

11.
Energy Convers Manag ; 126: 352-361, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27766002

ABSTRACT

With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

12.
Waste Manag ; 46: 212-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26394679

ABSTRACT

Mechanical-biological and biological-mechanical treatment (MBT/BMT) are effective methods for reducing biogenic additions to landfill, producing fuel products and recovering recyclate from residual waste. However, large amounts of contamination in the non-biological outputs reduce their market value. The aim of this study was therefore to identify the principal drivers and barriers to the marketability of ferrous metals (MBTFe) and heavy inert rejects (MBTr) recovered from four UK MBT/BMT plants. The plants were either using biodrying or anaerobic digestion (AD-MBT) for biological processing. Samples were collected at the different recovery stage processes and characterised for elemental composition and particle size distribution. Results showed that processes at the two biodrying plants produced MBTFe with 10% less contamination by non-target materials than the two AD-MBT plants. Further to this, approximately 10% of the MBTFe fraction sampled at all four facilities comprised non-target material which had become entrapped in the folds of metal food containers. A possible cause is waste comminution in the cutting gap of the low-speed high-torque cutting mills. Upgrading MBTFe outputs could save the UK MBT/BMT industry up to £ 4.4 million per annum which equates to £ 230,000 per annum for an average sized facility (i.e. capacity 108,000 tpa). Glass content in the MBTr samples ranged between 44% and 62%, however all plants showed approximately 85% combined content of glass, bricks, stones and ceramics. The biodegradable content in the MBTr samples indicated that only minimal upgrade would be required to achieve the Landfill Directive requirements for inert waste. Again valorisation of MBTr could save the UK MBT/BMT industry up to £ 1.9 million pa which equates to £ 160,000 per annum for an average sized facility.


Subject(s)
Ferrous Compounds/economics , Solid Waste/analysis , Solid Waste/economics , Waste Management/economics , Ferrous Compounds/analysis , United Kingdom , Waste Disposal Facilities
13.
Waste Manag ; 43: 307-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26168873

ABSTRACT

This study presents a decision support tool (DST) to enhance methane generation at individual landfill sites. To date there is no such tool available to provide landfill decision makers with clear and simplified information to evaluate biochemical processes within a landfill site, to assess performance of gas production and to identify potential remedies to any issues. The current lack in understanding stems from the complexity of the landfill waste degradation process. Two scoring sets for landfill gas production performance are calculated with the tool: (1) methane output score which measures the deviation of the actual methane output rate at each site which the prediction generated by the first order decay model LandGEM; and (2) landfill gas indicators' score, which measures the deviation of the landfill gas indicators from their ideal ranges for optimal methane generation conditions. Landfill gas indicators include moisture content, temperature, alkalinity, pH, BOD, COD, BOD/COD ratio, ammonia, chloride, iron and zinc. A total landfill gas indicator score is provided using multi-criteria analysis to calculate the sum of weighted scores for each indicator. The weights for each indicator are calculated using an analytical hierarchical process. The tool is tested against five real scenarios for landfill sites in UK with a range of good, average and poor landfill methane generation over a one year period (2012). An interpretation of the results is given for each scenario and recommendations are highlighted for methane output rate enhancement. Results demonstrate how the tool can help landfill managers and operators to enhance their understanding of methane generation at a site-specific level, track landfill methane generation over time, compare and rank sites, and identify problems areas within a landfill site.


Subject(s)
Decision Support Techniques , Methane/metabolism , Waste Disposal Facilities , Waste Management/methods , Ammonia/analysis , Biofuels , Biological Oxygen Demand Analysis , Chlorides/analysis , Hydrogen-Ion Concentration , Iron/analysis , Methane/analysis , Temperature , United Kingdom , Zinc/analysis
14.
Waste Manag ; 42: 128-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957938

ABSTRACT

Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing.


Subject(s)
Metals/analysis , Recycling , Soil/chemistry , Waste Disposal Facilities , Waste Management , Metals, Rare Earth/analysis , Organic Chemicals/analysis , Refuse Disposal , United Kingdom
16.
Environ Sci Technol ; 47(6): 2957-65, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23398118

ABSTRACT

Material flows and their contributions to fuel properties are balanced for the mechanical section of a mechanical-biological treatment (MBT) plant producing solid recovered fuel (SRF) for the UK market. Insights for this and similar plants were secured through a program of sampling, manual sorting, statistics, analytical property determination, and material flow analysis (MFA) with error propagation and data reconciliation. Approximately three-quarters of the net calorific value (Q(net,p,ar)) present in the combustible fraction of the biodried flow is incorporated into the SRF (73.2 ± 8.6%), with the important contributors being plastic film (30.7 MJ kg(ar)(-1)), other packaging plastic (26.1 MJ kg(ar)(-1)), and paper/card (13.0 MJ kg(ar)(-1)). Nearly 80% w/w of the chlorine load in the biodried flow is incorporated into SRF (78.9 ± 26.2%), determined by the operation of the trommel and air classifier. Through the use of a novel mass balancing procedure, SRF quality is understood, thus improving on the understanding of quality assurance in SRF. Quantification of flows, transfer coefficients, and fuel properties allows recommendations to be made for process optimization and the production of a reliable and therefore marketable SRF product.


Subject(s)
Biofuels/analysis , Refuse Disposal/methods , Biodegradation, Environmental , Chlorine/analysis , Coal Ash/analysis , Paper , Plants/metabolism , Plastics/chemistry
17.
Environ Sci Technol ; 46(3): 1923-31, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22191490

ABSTRACT

Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.


Subject(s)
Chlorine/analysis , Energy-Generating Resources/standards , Environmental Pollution/prevention & control , Recycling/methods , Refuse Disposal/methods , Waste Products/analysis , Models, Theoretical , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...