Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 171: 26-37, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34971953

ABSTRACT

In order to assist sustainable agriculture, new strategies and methods are being used based on the utilization of new natural molecules. These natural compounds can be used as potential natural crop protectors and growth promoters, and the elucidation of their modes/mechanisms of action can represent a big step towards cleaner agriculture free of agrochemicals. In the present paper, the mechanisms underlying the effects of exogenous resveratrol (R), a natural phytoalexin found in plants, on Lactuca sativa metabolism were investigated through physiological and metabolomic approaches. The results highlighted that R stimulates the growth of lettuce. A reduction of the O2⋅- production in R-treated seedlings and an increase in the photosynthesis efficiency was observed, indicated by a higher Fv/Fm. The metabolomic analysis of lettuce seedlings treated with R identified 116 metabolites related to galactose, amino acids, sugar and nucleotide sugar, and ascorbate and aldarate metabolisms. Increased content of some polyamines and several metabolites was also observed, which may have contributed to scavenging free radicals and activating antioxidant enzymes, thus reducing oxidative damage and improving PSII protection in R-treated seedlings.


Subject(s)
Lactuca , Seedlings , Antioxidants/metabolism , Lactuca/metabolism , Photosynthesis , Resveratrol/pharmacology , Seedlings/metabolism
2.
Plants (Basel) ; 10(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34451648

ABSTRACT

To date, synthetic herbicides are the main tools used for weed control, with consequent damage to both the environment and human health. In this respect, searching for new natural molecules and understanding their mode of action could represent an alternative strategy or support to traditional management methods for sustainable agriculture. Protodioscin is a natural molecule belonging to the class of steroid saponins, mainly produced by monocotyledons. In the present paper, protodioscin's phytotoxic potential was assessed to identify its target and the potential mode of action in the model plant Arabidopsis thaliana. The results highlighted that the root system was the main target of protodioscin, which caused a high inhibitory effect on the primary root length (ED50 50 µM) with morphological alteration, accompanied by a significant increase in the lateral root number and root hair density. Through a pharmacological and microscopic approach, it was underlined that this saponin modified both auxin distribution and transport, causing an auxin accumulation in the region of root maturation and an alteration of proteins responsible for the auxin efflux (PIN2). In conclusion, the saponin protodioscin can modulate the root system of A. thaliana by interfering with the auxin transport (PAT).

3.
Plant Physiol Biochem ; 166: 857-873, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34237604

ABSTRACT

Urochloa ruziziensis, a cover plant used in no-till systems, can suppress weeds in the field through their chemical compounds, but the mode of action of these compounds is still unknown. The present study aimed to investigate the effects of a saponin-rich butanolic extract from U. ruziziensis straw (BfUr) and one of its components, protodioscin on an eudicot Ipomoea grandifolia and a monocot Digitaria insularis weed. The anatomy and the morphology of the root systems and several parameters related to energy metabolism and antioxidant defense systems were examined. The IC50 values for the root growth inhibition by BfUr were 108 µg mL-1 in D. insularis and 230 µg mL-1 in I. grandifolia. The corresponding values for protodioscin were 34 µg mL-1 and 54 µg mL-1. I. grandifolia exhibited higher ROS-induced peroxidative damage in its roots compared with D. insularis. In the roots of both weeds, the BfUr and protodioscin induced a reduction in the meristematic and elongation zones with a precocious appearance of lateral roots, particularly in I. grandifolia. The roots also exhibited features of advanced cell differentiation in the vascular cylinder. These alterations were similar to stress-induced morphogenic responses (SIMRs), which are plant adaptive strategies to survive in the presence of toxicants. At concentrations above their IC50 values, the BfUr or protodioscin strongly inhibited the development of both weeds. Such findings demonstrated that U. ruziziensis mulches may contribute to the use of natural and renewable weed control tools.


Subject(s)
Diosgenin , Saponins , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Plant Weeds , Poaceae , Saponins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...