Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1777(7-8): 993-1000, 2008.
Article in English | MEDLINE | ID: mdl-18440298

ABSTRACT

The inflorescences of several members of the Arum lily family warm up during flowering and are able to maintain their temperature at a constant level, relatively independent of the ambient temperature. The heat is generated via a mitochondrial respiratory pathway that is distinct from the cytochrome chain and involves a cyanide-resistant alternative oxidase (AOX). In this paper we have used flux control analysis to investigate the influence of temperature on the rate of respiration through both cytochrome and alternative oxidases in mitochondria isolated from the appendices of intact thermogenic Arum maculatum inflorescences. Results are presented which indicate that at low temperatures, the dehydrogenases are almost in full control of respiration but as the temperature increases flux control shifts to the AOX. On the basis of these results a simple model of thermoregulation is presented that is applicable to all species of thermogenic plants. The model takes into account the temperature characteristics of the separate components of the plant mitochondrial respiratory chain and the control of each process. We propose that 1) in all aroid flowers AOX assumes almost complete control over respiration, 2) the temperature profile of AOX explains the reversed relationship between ambient temperature and respiration in thermoregulating Arum flowers, 3) the thermoregulation process is the same in all species and 4) variations in inflorescence temperatures can easily be explained by variations in AOX protein concentrations.


Subject(s)
Araceae/enzymology , Flowers/enzymology , Oxidoreductases/metabolism , Kinetics , Mitochondria/enzymology , Mitochondrial Proteins , Plant Proteins/metabolism , Temperature
2.
J Exp Bot ; 53(371): 1081-8, 2002 May.
Article in English | MEDLINE | ID: mdl-11971919

ABSTRACT

Detached roots of Poa annua were used to study alternative oxidase protein expression upon the addition of sucrose, glucose, fructose, inositol, mannitol, citrate or malate, at a concentration of 1 or 10 mM for 24 h. After 24 h the capacity of cytochrome c oxidase was decreased equally in all treatments. Only citrate induced the expression of the alternative oxidase, especially at a concentration of 1 mM (15-fold). The activity of the alternative pathway (measured with the (18)O-fractionation technique) was not affected by the addition of sucrose for 24 h as compared with time zero. However, after the addition of citrate or mannitol the activity of the alternative pathway decreased to almost zero. The discrepancy between the large increase in alternative oxidase protein concentration when citrate was applied and the concomitant decrease in alternative pathway activity is discussed.


Subject(s)
Carbohydrates/pharmacology , Oxidoreductases/metabolism , Plant Roots/drug effects , Poaceae/drug effects , Citric Acid/pharmacology , Electron Transport Complex IV/metabolism , Fructose/pharmacology , Glucose/pharmacology , Immunoblotting , Inositol/pharmacology , Malates/pharmacology , Mannitol/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins , Oxygen/metabolism , Plant Proteins , Plant Roots/enzymology , Poaceae/enzymology , Submitochondrial Particles/drug effects , Submitochondrial Particles/metabolism , Sucrose/pharmacology
3.
Physiol Plant ; 113(2): 185-192, 2001 Oct.
Article in English | MEDLINE | ID: mdl-12060295

ABSTRACT

Cyanide-resistant respiration was studied in mitochondria isolated from the roots of bean plants (Phaseolus vulgaris L. cv. Zlota Saxa) grown hydroponically up to 16 days on a phosphate-sufficient (+P, control) or phosphate-deficient (-P) medium. Western blotting indicated that the alternative oxidase (AOX) was present only in its reduced (active) form, both in phosphate-sufficient and phosphate-deficient roots, but in the latter, the amount of AOX protein was greater. Addition of pyruvate to the isolation, washing and reaction media made mitochondria from +P roots cyanide-insensitive, similar to mitochondria from -P roots. The doubled activity of NAD-malic enzyme (NAD-ME) in -P compared with +P root mitochondria may suggest increased pyruvate production in -P mitochondria. Lower cytochrome c oxidase (COX) activity and no uncoupler effect on respiration indicated limited cytochrome chain activity in -P mitochondria. In -P mitochondria, the oxygen uptake decreased and the level of Q reduction increased from 60 to 80%. With no pyruvate present (AOX not fully activated), inhibition of the cytochrome pathway resulted in an increased level of the ratio of reduced ubiquinone (Qr) to total ubiquinone (Qt) (Qr/Qt) in +P mitochondria, but did not change Qr/Qt in -P mitochondria. When pyruvate was present, the kinetics for AOX were similar in mitochondria from -P and +P roots. It is suggested that AOX participation in -P respiration may provide an acclimation to phosphate deficiency. Stabilization of the ubiquinone reduction level by AOX might prevent the harmful effect of an increased formation of reactive oxygen species.

SELECTION OF CITATIONS
SEARCH DETAIL
...