Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomech Model Mechanobiol ; 22(4): 1253-1266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37171687

ABSTRACT

The outcome of vertebroplasty is hard to predict due to its dependence on complex factors like bone cement and marrow rheologies. Cement leakage could occur if the procedure is done incorrectly, potentially causing adverse complications. A reliable simulation could predict the patient-specific outcome preoperatively and avoid the risk of cement leakage. Therefore, the aim of this work was to introduce a computationally feasible and experimentally validated model for simulating vertebroplasty. The developed model is a multiphase continuum-mechanical macro-scale model based on the Theory of Porous Media. The related governing equations were discretized using a combined finite element-finite volume approach by the so-called Box discretization. Three different rheological upscaling methods were used to compare and determine the most suitable approach for this application. For validation, a benchmark experiment was set up and simulated using the model. The influence of bone marrow and parameters like permeability, porosity, etc., was investigated to study the effect of varying conditions on vertebroplasty. The presented model could realistically simulate the injection of bone cement in porous materials when used with the correct rheological upscaling models, of which the semi-analytical averaging of the viscosity gave the best results. The marrow viscosity is identified as the crucial reference to categorize bone cements as 'high- 'or 'low-' viscosity in the context of vertebroplasty. It is confirmed that a cement with higher viscosity than the marrow ensures stable development of the injection and a proper cement interdigitation inside the vertebra.


Subject(s)
Bone Cements , Vertebroplasty , Humans , Porosity , Vertebroplasty/adverse effects , Vertebroplasty/methods , Spine , Computer Simulation
2.
Biomech Model Mechanobiol ; 21(1): 277-315, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34918207

ABSTRACT

Cancer is one of the most serious diseases for human beings, especially when metastases come into play. In the present article, the example of lung-cancer metastases in the brain is used to discuss the basic problem of cancer growth and atrophy as a result of both nutrients and medication. As the brain itself is a soft tissue that is saturated by blood and interstitial fluid, the biomechanical description of the problem is based on the Theory of Porous Media enhanced by the results of medication tests carried out in in-vitro experiments on cancer-cell cultures. Based on theoretical and experimental results, the consideration of proliferation, necrosis and apoptosis of metastatic cancer cells is included in the description by so-called mass-production terms added to the mass balances of the brain skeleton and the interstitial fluid. Furthermore, the mass interaction of nutrients and medical drugs between the solid and the interstitial fluid and its influence on proliferation, necrosis and apoptosis of cancer cells are considered. As a result, the overall model is appropriate for the description of brain tumour treatment combined with stress and deformation induced by cancer growth in the skull.


Subject(s)
Extracellular Fluid , Neoplasms , Atrophy , Brain , Cell Proliferation , Humans , Lung
3.
Int J Numer Method Biomed Eng ; 31(1): e02696, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25369756

ABSTRACT

Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution µCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations.


Subject(s)
Bone Cements , Injections/methods , Lumbar Vertebrae/physiology , Models, Biological , Algorithms , Biomechanical Phenomena/physiology , Computer Simulation , Diffusion , Finite Element Analysis , Humans , Image Processing, Computer-Assisted , Lumbar Vertebrae/diagnostic imaging , Porosity , Radiography
4.
Article in English | MEDLINE | ID: mdl-24261340

ABSTRACT

Human brain tissue is complex and multi-component in nature. It consists of an anisotropic hyperelastic solid material composed of tissue cells and blood vessel walls. Brain tissue is permeated by two viscous pore liquids, the interstitial fluid and the blood. Both liquids are mobile within the tissue and exhibit a significant anisotropic perfusion behaviour. To model this complex aggregate, the well-founded Theory of Porous Media, a continuum-mechanical approach for the description of multi-component aggregates, is used. To include microscopic information, the model is enhanced by tissue characteristics obtained from medical imaging techniques. Moreover, the model is applied to invasive drug-delivery strategies, i.e. the direct extra-vascular infusion of therapeutic agents. For this purpose, the overall interstitial fluid is treated as a real two-component mixture of a liquid solvent and a dissolved therapeutic solute. Finally, the continuum-mechanical model results in a set of strongly coupled partial differential equations which are spatially discretised using mixed finite elements and solved in a monolithic manner with an implicit Euler time-integration scheme. Numerical examples demonstrate the applicability of the presented model.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Models, Biological , Pharmacokinetics , Anisotropy , Diffusion , Drug Delivery Systems/methods , Finite Element Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...