Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Water Sci Technol ; 85(3): 943-960, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35166712

ABSTRACT

Partial nitritation anammox (PNA) membrane aerated biofilm reactors (MABRs) have the potential to be employed in mainstream wastewater treatment and can drastically decrease the energy and carbon requirements for nitrogen removal. Previous PNA MABR studies have looked at 1-stage systems, but no study has holistically compared the performance of different MABR configurations. In this study, a PNA MABR was mechanistically modelled to determine the impact of the reactor configuration (1-stage, hybrid, or 2-stage system) on the location of the preferred niche for anammox bacteria and the overall nitrogen removal performance. Results from this study show that the 2-stage configuration, which used an MABR with a thin biofilm for nitritation and a moving bed biofilm reactor for anammox, had a 20% larger nitrogen removal rate than the 1-stage or hybrid configurations. This suggests that an MABR should focus on maximizing nitrite production with anammox implemented in a second-stage biofilm reactor to achieve the most cost-effective nitrogen removal. However, the optimal configuration will likely be facility specific, as each facility differs in operating costs, construction costs, footprint, and effluent limits. Additional experimentation is required to confirm these results, but this work narrows the number of viable configurations that need to be tested. The results of this study will inform researchers and engineers how to best implement PNA MABRs in mainstream nitrogen removal at larger scales.


Subject(s)
Ammonium Compounds , Bioreactors , Anaerobic Ammonia Oxidation , Biofilms , Nitrites , Nitrogen , Oxidation-Reduction , Wastewater
2.
J Chromatogr Sci ; 48(7): 566-71, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20819282

ABSTRACT

Fused-core superficially porous particles have recently created considerable interest for high-performance liquid chromatography separations because of their unusual high column efficiency and much lower back pressure when compared to sub-2-microm particles. With superficially porous particles, larger solutes can move rapidly in and out of a thin porous shell, resulting in reduced band broadening at higher mobile phase velocities for greater separation speeds. The original silica fused-core particles were 2.7 microm in diameter with a 0.5-microm thick shell of 90 A pores designed for the fast separation of small molecules with molecular weights of less than approximately 5000. This manuscript describes new fused-core particles with similar physical characteristics except with a porous shell of 160 A pores designed specifically for rapidly separating peptides (and some small proteins) with molecular weights up to approximately 15,000 Daltons. Because of the larger pore size, restricted diffusion of these larger molecules is not seen since ready access to the entire porous shell is featured. Data are given to define sample loading qualities for columns of these new particles. Column stability studies indicate that these particles bonded with a sterically protected C(18) stationary phase can be used at low pH and higher temperatures with excellent results. The wider-pore particles of this study are shown to be particularly useful with a mass spectrometer detector for the rapid gradient separation of peptides using both volatile trifluoroacetic acid and formic acid containing mobile phases. Examples are provided for the separation of complex peptide mixtures to illustrate the capabilities for columns of these new wider-pore, fused-core particles.

3.
Food Chem Toxicol ; 43(8): 1179-206, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950814

ABSTRACT

This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of phenethyl alcohol, aldehyde, acid, and related acetals and esters as flavoring ingredients is evaluated. The group of phenethylalcohol, aldehyde, acid, and related acetals and esters was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food, their rapid absorption, metabolic detoxication, and excretion in humans and other animals, their low level of flavor use, the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of phenethyl alcohol, aldehyde, acid, and related acetals and esters as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Acetaldehyde/analogs & derivatives , Flavoring Agents/toxicity , Food Industry , Phenylacetates/toxicity , Phenylethyl Alcohol/toxicity , United States Food and Drug Administration/legislation & jurisprudence , Acetaldehyde/pharmacokinetics , Acetaldehyde/toxicity , Acetals , Animals , Esters , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Phenylacetates/pharmacokinetics , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacokinetics , Toxicity Tests , United States , United States Food and Drug Administration/standards
4.
Food Chem Toxicol ; 43(8): 1207-40, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950815

ABSTRACT

This publication is the eighth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of benzyl derivatives as flavoring ingredients is evaluated. The group of benzyl derivatives was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals, their low level of flavor use, the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Benzaldehydes/toxicity , Benzoic Acid/toxicity , Benzyl Alcohol/toxicity , Flavoring Agents/toxicity , Food Industry , United States Food and Drug Administration/legislation & jurisprudence , Animals , Benzaldehydes/pharmacokinetics , Benzoic Acid/pharmacokinetics , Benzyl Alcohol/pharmacokinetics , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Toxicity Tests , United States , United States Food and Drug Administration/standards
5.
Food Chem Toxicol ; 43(8): 1241-71, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950816

ABSTRACT

This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of hydroxy- and alkoxy-substituted benzyl derivatives as flavoring ingredients is evaluated. The group of hydroxy- and alkoxy-benzyl derivatives was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of hydroxy- and alkoxy-substituted benzyl derivatives as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Alcohols , Benzyl Compounds/toxicity , Flavoring Agents/toxicity , Food Industry , United States Food and Drug Administration/legislation & jurisprudence , Animals , Benzyl Compounds/pharmacokinetics , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Toxicity Tests , United States , United States Food and Drug Administration/standards
6.
Food Chem Toxicol ; 43(3): 345-63, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15680674

ABSTRACT

A scientifically based guide has been developed to evaluate the safety of naturally occurring mixtures, particularly essential oils, for their intended use as flavor ingredients. The approach relies on the complete chemical characterization of the essential oil and the variability of the composition of the oil in the product intended for commerce. Being products of common plant biochemical pathways, the chemically identified constituents are organized according to a limited number of well-established chemical groups called congeneric groups. The safety of the intake of the each congeneric group from consumption of the essential oil is evaluated in the context of data on absorption, metabolism, and toxicology of members of the congeneric group. The intake of the group of unidentified constituents is evaluated in the context of the consumption of the essential oil as a food, a highly conservative toxicologic threshold, and toxicity data on the essential oil or an essential oil of similar chemotaxonomy. The flexibility of the guide is reflected in the fact that high intake of major congeneric groups of low toxicologic concern will be evaluated along with low intake of minor congeneric groups of significant toxicological concern (i.e., higher structural class). The guide also provides a comprehensive evaluation of all congeneric groups and constituents that account for the majority of the composition of the essential oil. The overall objective of the guide is to organize and prioritize the chemical constituents of an essential oil in order that no reasonably possible significant risk associated with the intake of essential oil goes unevaluated. The guide is, however, not intended to be a rigid checklist. The Flavor and Extract Manufacturers Association (FEMA) Expert Panel will continue to evaluate each essential oil on a case by case basis applying their scientific judgment to insure that each natural flavor complex is exhaustively evaluated.


Subject(s)
Consumer Product Safety , Flavoring Agents/adverse effects , Oils, Volatile/adverse effects , Animals , Drug Evaluation , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Industry , Food Technology , Humans , Oils, Volatile/analysis , Oils, Volatile/metabolism , United States
7.
Toxicol Lett ; 149(1-3): 197-207, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15093265

ABSTRACT

Natural flavour complexes (NFCs) are chemical mixtures obtained by applying physical separation methods to botanical sources. Many NFCs are derived from foods. In the present paper, a 12-step procedure for the safety evaluation of NFCs, 'the naturals paradigm', is discussed. This procedure, which is not intended to be viewed as a rigid check list, begins with a description of the chemical composition of the commercial product, followed by a review of the data on the history of dietary use. Next, each constituent of an NFC is assigned to one of 33 congeneric groups of structurally related substances and to one of three classes of toxic potential, each with its own exposure threshold of toxicological concern. The group of substances of unknown structure is placed in the class of greatest toxic potential. In subsequent steps, for each congeneric group the procedure determines the per capita intake, considers metabolic pathways and explores the need and availability of toxicological data. Additional toxicological and analytical data may be required for a comprehensive safety evaluation. The procedure concludes with an evaluation of the NFC in its entirety, also considering combined exposure to congeneric groups. The first experiences with the use of this procedure are very promising. Future safety evaluations of larger numbers of NFCs will indicate the usefulness of the system, either in its present form or in a form modified on the basis of experience.


Subject(s)
Biological Factors/toxicity , Flavoring Agents/toxicity , Animals , Biological Factors/adverse effects , Biological Factors/chemistry , Biological Factors/standards , Complex Mixtures/adverse effects , Complex Mixtures/chemistry , Complex Mixtures/standards , Complex Mixtures/toxicity , Elettaria/toxicity , Flavoring Agents/adverse effects , Flavoring Agents/chemistry , Flavoring Agents/standards , Humans , Plant Oils/toxicity
8.
Food Chem Toxicol ; 40(7): 851-70, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065208

ABSTRACT

This publication is the seventh in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavouring substances under conditions of intended use. In this review, scientific data relevant to the safety evaluation of the allylalkoxybenzene derivatives methyl eugenol and estragole is critically evaluated by the FEMA Expert Panel. The hazard determination uses a mechanism-based approach in which production of the hepatotoxic sulfate conjugate of the 1'-hydroxy metabolite is used to interpret the pathological changes observed in different species of laboratory rodents in chronic and subchronic studies. In the risk evaluation, the effect of dose and metabolic activation on the production of the 1'-hydroxy metabolite in humans and laboratory animals is compared to assess the risk to humans from use of methyl eugenol and estragole as naturally occurring components of a traditional diet and as added flavouring substances. Both the qualitative and quantitative aspects of the molecular disposition of methyl eugenol and estragole and their associated toxicological sequelae have been relatively well defined from mammalian studies. Several studies have clearly established that the profiles of metabolism, metabolic activation, and covalent binding are dose dependent and that the relative importance diminishes markedly at low levels of exposure (i.e. these events are not linear with respect to dose). In particular, rodent studies show that these events are minimal probably in the dose range of 1-10 mg/kg body weight, which is approximately 100-1000 times the anticipated human exposure to these substances. For these reasons it is concluded that present exposure to methyl eugenol and estragole resulting from consumption of food, mainly spices and added as such, does not pose a significant cancer risk. Nevertheless, further studies are needed to define both the nature and implications of the dose-response curve in rats at low levels of exposure to methyl eugenol and estragole.


Subject(s)
Eugenol/analogs & derivatives , Eugenol/toxicity , Flavoring Agents/toxicity , Animals , Biotransformation , Eugenol/chemistry , Eugenol/pharmacokinetics , Female , Flavoring Agents/chemistry , Flavoring Agents/pharmacokinetics , Humans
9.
Food Chem Toxicol ; 40(4): 429-51, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11893403

ABSTRACT

This is the fifth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually taking into account the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of pyrazine derivatives as flavoring ingredients is evaluated.


Subject(s)
Flavoring Agents/pharmacokinetics , Pyrazines/pharmacokinetics , Safety , Animals , Carcinogens/chemistry , Carcinogens/pharmacokinetics , Carcinogens/toxicity , Flavoring Agents/chemistry , Flavoring Agents/toxicity , Food Industry , Humans , Mice , Pyrazines/chemistry , Pyrazines/toxicity , Rats , Reference Values , Toxicity Tests
12.
J Gerontol A Biol Sci Med Sci ; 55(6): M311-6, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10843350

ABSTRACT

BACKGROUND: Previous investigators have reported that maximal power increases during growth and decreases with aging. These age-related differences have been reported to persist even when power is scaled to body mass or muscle size. We hypothesized that age-related differences in maximal power were primarily related to differences in muscle size and fiber-type distribution rather than to age per se. METHODS: Maximum cycling power (Pmax) and optimal pedaling rate (Vopt, a surrogate measure for muscle fiber type) were determined for 195 boys and men, 8-70 years of age, by using inertial load cycle ergometry. Anthropometric dimensions were used to estimate lean thigh volume (LTVest) of all subjects, and magnetic resonance imagery was used to determine thigh and hip muscle volume (MRIvol) for 24 subjects. RESULTS: Pmax was highly related to the product of LTVest and Vopt (LTVest X Vopt; r2 = .83). Multiple regression revealed that Pmax was significantly related to both LTVest x Vopt and age (R2 = .84). Power scaled by LTVest X Vopt was stable during growth and exhibited a small but significant decrease with aging. MRIvol was highly correlated with LTVest, and the ratio of LTVest to MRIvol was independent of age. CONCLUSIONS: These results suggest that muscle volume and optimal pedaling rate are the main determinants of maximal power across the lifespan and that the contractile properties of muscle are developed early in childhood and remain nearly intact late into the lifespan.


Subject(s)
Aging/physiology , Bicycling/physiology , Muscle, Skeletal/physiology , Adolescent , Adult , Age Factors , Aged , Child , Female , Humans , Male , Middle Aged
13.
J Am Acad Child Adolesc Psychiatry ; 39(4): 429-36, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10761344

ABSTRACT

OBJECTIVES: To examine parents' emotional and verbal reactions to adolescents' suicide attempts and to test models of the interpersonal functions of suicide attempts. METHOD: Thirty-four mothers and fathers of 23 adolescent suicide attempters were assessed shortly after the attempt regarding their emotional reactions the day before, upon discovering, and the day after the suicide attempt, using both open-ended and structured interviews. RESULTS: Feelings of caring, sadness, and anxiety increased from before the attempt to the point of discovery, and for mothers they remained higher through the following day. Hostile feelings were present in approximately 50% of mothers across the time points; however, upon discovering the suicide attempt, parents were less likely to verbalize hostility than they were to verbalize support and to be careful what they said. CONCLUSIONS: The findings have implications for clinical interventions with parents of recent suicide attempters.


Subject(s)
Adolescent Behavior , Emotions , Father-Child Relations , Mother-Child Relations , Suicide, Attempted/psychology , Adolescent , Female , Hostility , Humans , Interview, Psychological , Male , Object Attachment , Verbal Behavior
14.
Food Chem Toxicol ; 37(7): 789-811, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10496381

ABSTRACT

This publication is the fourth in a series of safety evaluations performed by the Expert Panel of the Flavour and Extract Manufacturers' Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavouring substances under conditions of intended use. In this review, scientific data relevant to the safety evaluation of trans-anethole (i.e. 4-methoxypropenylbenzene) as a flavouring substance is critically evaluated by the FEMA Expert Panel. The evaluation uses a mechanism-based approach in which production of the hepatotoxic metabolite anethole epoxide (AE) is used to interpret the pathological changes observed in different species and sexes of laboratory rodents in chronic and subchronic dietary studies. Female Sprague Dawley rats metabolize more trans-anethole to AE than mice or humans and, therefore, are the most conservative model for evaluating the potential for AE-induced hepatotoxicity in humans exposed to trans-anethole from use as a flavouring substance. At low levels of exposure, trans-anethole is efficiently detoxicated in rodents and humans primarily by O-demethylation and omega-oxidation, respectively, while epoxidation is only a minor pathway. At high dose levels in rats, particularly females, a metabolic shift occurs resulting in increased epoxidation and formation of AE. Lower activity of the "fast" acting detoxication enzyme epoxide hydrolase in the female is associated with more pronounced hepatotoxicity compared to that in the male. The continuous intake of high dose levels of trans-anethole (i.e. cumulative exposure) has been shown in dietary studies to induce a continuum of cytotoxicity, cell necrosis and cell proliferation. In chronic dietary studies in rats, hepatotoxicity was observed when the estimated daily hepatic production of AE exceeded 30 mg AE/kg body weight. In female rats, chronic hepatotoxicity and a low incidence of liver tumours were reported at a dietary intake of 550 mg trans-anethole/kg body weight/day. Under these conditions, daily hepatic production of AE exceeded 120 mg/kg body weight. Additionally, neither trans-anethole nor AE show any evidence of genotoxicity. Therefore, the weight of evidence supports the conclusion that hepatocarcinogenic effects in the female rat occur via a non-genotoxic mechanism and are secondary to hepatotoxicity caused by continuous exposure to high hepatocellular concentrations of AE. trans-Anethole was reaffirmed as GRAS (GRASr) based on (1) its low level of flavour intake (54 microg/kg body weight/day); (2) its metabolic detoxication pathway in humans at levels of exposure from use as a flavouring substance; (3) the lack of mutagenic or genotoxic potential; (4) the NOAEL of 120 mg trans-anethole/kg body weight/day in the female rat reported in a 2 + -year study which produces a level of AE (i.e. 22 mg AE/kg body weight/day) at least 10,000 times the level (0.002 mg AE/kg body weight day) produced from the intake of trans-anethole from use as a flavouring substance; and (5) the conclusion that a slight increase in the incidence of hepatocellular tumours in the high dose group (550 mg trans-anethole/kg body weight/day) of female rats was the only significant neoplastic finding in a 2+ -year dietary study. This finding is concluded to be secondary to hepatotoxicity induced by high hepatocellular concentrations of AE generated under conditions of the study. Because trans-anethole undergoes efficient metabolic detoxication in humans at low levels of exposure, the neoplastic effects in rats associated with dose-dependent hepatotoxicity are not indicative of any significant risk to human health from the use of trans-anethole as a flavouring substance.


Subject(s)
Anisoles/toxicity , Flavoring Agents/toxicity , Allylbenzene Derivatives , Animals , Anisoles/pharmacokinetics , Carcinogenicity Tests , Carcinogens/toxicity , Dealkylation , Enzyme Induction/drug effects , Epoxy Compounds/metabolism , Female , Flavoring Agents/pharmacokinetics , Humans , Lethal Dose 50 , Male , Mice , Mutagenicity Tests , Mutagens/toxicity , Oxidation-Reduction , Rats , Rats, Wistar
15.
Hum Pathol ; 29(12): 1469-79, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9865835

ABSTRACT

The autopsy rate in the United States today is remarkably low, with proportionally fewer autopsies for natural causes of death. Consequently, most cardiovascular epidemiology studies do not use autopsy data and rely on death certificates, medical records, questionnaires, and family interviews as sources of mortality information. These practices introduce a high degree of variability and uncertainty regarding cause of death. This review illustrates the necessity for increased use of autopsies in cardiovascular epidemiology by critically evaluating other measures of cardiovascular disease (CVD) incidence. We evaluated the literature regarding CVD as cause of death and conducted discussions with cardiologists, pathologists, and epidemiologists. No attempt was made for meta-analysis. This review shows the limited reliability of death certificates, medical records, and interviews as sources of mortality statistics. In addition, the autopsy's role in clearly indicating the presence of CVD is illustrated. The autopsy used in conjunction with medical records is the only reliable means for establishing cause of death from CVD. There is an urgent need to reassess the current dependence of statistical mortality data on death certificates and other inadequate sources of CVD incidence. Death certificates, in general, are inadequately monitored for quality control and appropriate administrative oversight. With an increase in the number of hospitals performing no autopsies to investigate cause of death, a uniform national autopsy database is needed.


Subject(s)
Autopsy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/mortality , Cause of Death , Death Certificates , Diagnostic Errors , Female , Humans , Male , Myocardial Infarction/epidemiology , Myocardial Infarction/mortality , Myocardial Infarction/pathology , Physician-Patient Relations , Survival Rate , United States/epidemiology
18.
Med Sci Sports Exerc ; 29(11): 1505-12, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9372489

ABSTRACT

A cycle ergometer was modified to measure power (P) with resistance provided solely by the moment of inertia (I) of the flywheel. P was calculated as the product of I, angular velocity (omega), and angular acceleration (alpha). Flywheel omega and alpha were determined by means of an optical sensor and a micro-controller based computer interface which measured time (+/- 1 microsecond) and allowed P to be calculated instantaneously (PI) every 3 degrees of pedal crank rotation or averaged over one complete revolution of the pedal cranks (PREV). Values for maximum P were identified from each bout (PI max and PREV max). Mechanical calibration of torque via a resistive strap proved this method to be both valid and accurate. Thirteen active male subjects performed four bouts of maximal acceleration lasting approximately 3-4 s with 2 min resting recovery. The mean coefficient of variation for PREV max was 3.3 +/- 0.6% and the intraclass correlation was 0.99. PREV max averaged 1317 +/- 66 W at 122 +/- 2 rpm, and PI max averaged 2137 +/- 101 W at 131 +/- 2 rpm. PREV max and PI max were highly correlated (r = 0.86 and r = 0.80 respectively, P < 0.002) with estimated lean thigh volume. Therefore, the inertial-load method provides a valid and reliable determination of cycling power in one short exercise bout.


Subject(s)
Exercise Test/instrumentation , Exercise/physiology , Adult , Biomechanical Phenomena , Ergonomics , Humans , Male , Physical Endurance , Physical Phenomena , Physics , Reproducibility of Results
19.
Food Chem Toxicol ; 35(8): 739-51, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9350219

ABSTRACT

The Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA) has assessed the safety of furfural for its continued use as a flavour ingredient. The safety assessment takes into account the current scientific information on exposure, metabolism, pharmacokinetics, toxicology, carcinogenicity and genotoxicity. Furfural was reaffirmed as GRAS (GRASr) as a flavour ingredient under conditions of intended use based on: (1) its mode of metabolic detoxication in humans; (2) its low level of flavour use compared with higher intake levels as a naturally occurring component of food; (3) the safety factor calculated from results of subchronic and chronic studies, (4) the lack of reactivity with DNA; and (5) the conclusion that the only statistically significant finding in the 2-year NTP bioassays, an increased incidence of hepatocellular adenomas and carcinomas in the high-dose group of male mice, was secondary to pronounced hepatotoxicity. Taken together, these data do not indicate any risk to human health under conditions of use as a flavour ingredient. This evidence of safety is supported by the occurrence of furfural as a natural component of traditional foods, at concentrations in the diet resulting in a 'natural intake' that is at least 100 times higher than the intake of furfural from use as a flavour ingredient.


Subject(s)
Flavoring Agents , Food Additives/standards , Furaldehyde , Adenoma, Liver Cell/chemically induced , Adenoma, Liver Cell/pathology , Animals , Carcinogenicity Tests , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Drug Evaluation , Female , Flavoring Agents/chemistry , Flavoring Agents/pharmacokinetics , Flavoring Agents/toxicity , Furaldehyde/chemistry , Furaldehyde/pharmacokinetics , Furaldehyde/toxicity , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Mice , Mutagenicity Tests , Rats , Safety
20.
Toxicol Pathol ; 25(4): 410-1, 1997.
Article in English | MEDLINE | ID: mdl-9280128
SELECTION OF CITATIONS
SEARCH DETAIL
...