Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2318771121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416686

ABSTRACT

Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.


Subject(s)
Ion Channels , Superoxides , Humans , Reactive Oxygen Species/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Superoxides/metabolism , Ion Channels/metabolism , Oxidative Stress , Adenosine Triphosphate/metabolism , Epithelial Cells/metabolism , Oxidants/pharmacology , Oxygen/metabolism , Mitochondrial Proteins/metabolism
2.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37773633

ABSTRACT

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers , Brain Neoplasms/drug therapy , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Glioblastoma/pathology , Magnetic Resonance Imaging , Temozolomide/therapeutic use
3.
Adv Redox Res ; 92023 Dec.
Article in English | MEDLINE | ID: mdl-37808406

ABSTRACT

Ascorbate (vitamin C) can rapidly oxidize in many near-neutral pH, aqueous solutions. We report on the stability of ascorbate solutions prepared for infusion into patients using standard pharmacy protocols, for example, 75 g of ascorbate/L in water for infusion. The concentration of ascorbate was monitored for changes over time using direct UV-Vis spectroscopy. The pH of the solution was about 5.7 with no significant change over 24 h. There was only an approximate loss of 1% per day over the first 3 days of storage. This information allows decisions on how far ahead of need such preparations can be made. We also provide laboratory approaches to minimize or control the rate of oxidation of ascorbate solutions for use in chemical and biochemical studies as well as preclinical animal studies. The goal is to have the amount of ascorbate intended to be used in experiments be the actual amount available.

4.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37759986

ABSTRACT

Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.

5.
Adv Redox Res ; 92023 Dec.
Article in English | MEDLINE | ID: mdl-37692975

ABSTRACT

Nitric oxide (NO•) generated by nitric oxide synthases is involved in many physiological and pathophysiological processes. However, non-enzymatic formation of NO• also occurs in vivo. Here we investigated the production of NO• from nitrite, as facilitated by ascorbate, over the pH range of 2.4-7.4. Using a nitric oxide electrode, we observed at low pH a rapid generation of NO• from nitrite and ascorbate that slows with increasing pH. The formation of NO• was confirmed by its reaction with oxyhemoglobin. In the ascorbate/nitrite system a steady-state level of NO• was achieved, suggesting that a futile redox cycle of nitrite-reduction by ascorbate and NO•-oxidation by dioxygen was established. However, at pH-values of around 7 and greater, the direct reduction of nitrite by ascorbate is very slow; thus, this route to the non-enzymatic production of NO• is not likely to be significant process in vivo in environments having a pH around 7.4. The production of nitric oxide by nitrite and ascorbate would be important only in areas of lower pH, e.g. stomach/digestive system, sites of inflammation, and areas of hypoxia such as tumor tissue. In patients receiving very large doses of ascorbate delivered by intravenous infusion, plasma levels of ascorbate on the order of 20 - 30 mM can be achieved. After infusion, levels of nitrate and nitrite in plasma were unchanged. Thus, in blood and tissue that maintain a pH of about 7.4, the reduction of nitrite to nitric oxide by ascorbate appears to be insignificant, even at very large, pharmacological levels of ascorbate.

6.
Nucleic Acids Res ; 51(10): 5056-5072, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37078607

ABSTRACT

Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.


Subject(s)
Antioxidants , Neoplasms , Humans , Hydrogen Peroxide/toxicity , Mutation , Oxidation-Reduction , Neoplasms/genetics , Oxidants
7.
Sci Rep ; 12(1): 22521, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581766

ABSTRACT

At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Pancreatic Neoplasms/metabolism , Antioxidants/therapeutic use , Antineoplastic Agents/therapeutic use , Adenosine Triphosphate
9.
Nat Commun ; 13(1): 6107, 2022 10 16.
Article in English | MEDLINE | ID: mdl-36245043

ABSTRACT

Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.


Subject(s)
Cell Self Renewal , Leukemia, Myeloid, Acute , Humans , Cell Self Renewal/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Succinate Dehydrogenase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Water Sci Technol ; 86(8): 1887-1903, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36315083

ABSTRACT

Partial nitritation anammox (PNA) membrane-aerated biofilm reactors (MABRs) can be used in mainstream nitrogen removal to help facilities reduce their energy consumption. Previous PNA MABR research has not investigated the impacts of staging, i.e. arraying MABRs in series, on their nitrogen removal performance, operation, and ability to suppress nitrite oxidizing bacteria. In this paper, a mathematical model simulated PNA MABR performance at different influent total ammonia concentrations and loadings. A design methodology for staging PNA MABRs was created and found that the amount of membrane surface area is dependent upon the total ammonia-nitrogen concentration and loading, and the air loading to the membrane must be proportional to the total ammonia-nitrogen loading to maximize the total inorganic nitrogen (TIN) removal rate. This led to approximately equal-sized stages that each had a TIN removal percentage of 71% of the influent total ammonia nitrogen. Staging a treatment train resulted in 9.8% larger total ammonia and 9.3% larger total nitrogen removal rates when compared with an un-staged reactor. The un-staged reactor also was not able to produce an effluent total ammonia concentration below 5 mg N/L which would be necessary for many facilities' permits.


Subject(s)
Ammonia , Bioreactors , Anaerobic Ammonia Oxidation , Biofilms , Bioreactors/microbiology , Denitrification , Nitrogen , Oxidation-Reduction
11.
Pancreas ; 51(6): 684-693, 2022 07 01.
Article in English | MEDLINE | ID: mdl-36099493

ABSTRACT

OBJECTIVES: Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS: Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS: P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS: The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ascorbic Acid/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Fluorouracil , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Leucovorin/pharmacology , Leucovorin/therapeutic use , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Paclitaxel , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
12.
Free Radic Biol Med ; 188: 175-184, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35724853

ABSTRACT

OBJECTIVE: Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue. To assess free radical production as a result of traumatic injury, we measured biomolecular free radical generation via immuno-spin trapping (IST) of protein/proteoglycan/lipid free radicals after a 2 J/cm2 impact to swine articular cartilage explants. This technique allows visualization of free radical formation upon a wide variety of molecules using formalin-fixed, paraffin-embedded approaches. Scoring of extracellular staining by trained, blinded scorers demonstrated significant increases with impact injury, particularly at sites of cartilage cracking. Increases remain in the absence of live chondrocytes but are diminished; thus, they appear to be a cell-dependent and -independent feature of injury. We then modulated the extracellular environment with a pulse of heparin to demonstrate the responsiveness of the IST signal to changes in cartilage biology. Addition of heparin caused a distinct change in the distribution of protein/lipid free radicals at sites of failure alongside a variety of pertinent redox changes related to osteoarthritis. This study directly confirms the production of biomolecular free radicals from articular trauma, providing a rigorous characterization of their formation by injury.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Chondrocytes , Free Radicals , Heparin , Spin Trapping/methods , Swine
13.
Redox Biol ; 53: 102318, 2022 07.
Article in English | MEDLINE | ID: mdl-35525024

ABSTRACT

PURPOSE: Platinum-based chemotherapy with or without immunotherapy is the mainstay of treatment for advanced stage non-small cell lung cancer (NSCLC) lacking a molecular driver alteration. Pre-clinical studies have reported that pharmacological ascorbate (P-AscH-) enhances NSCLC response to platinum-based therapy. We conducted a phase II clinical trial combining P-AscH- with carboplatin-paclitaxel chemotherapy. EXPERIMENTAL DESIGN: Chemotherapy naïve advanced stage NSCLC patients received 75 g ascorbate twice per week intravenously with carboplatin and paclitaxel every three weeks for four cycles. The primary endpoint was to improve tumor response per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 compared to the historical control of 20%. The trial was conducted as an optimal Simon's two-stage design. Blood samples were collected for exploratory analyses. RESULTS: The study enrolled 38 patients and met its primary endpoint with an objective response rate of 34.2% (p = 0.03). All were confirmed partial responses (cPR). The disease control rate was 84.2% (stable disease + cPR). Median progression-free and overall survival were 5.7 months and 12.8 months, respectively. Treatment-related adverse events (TRAE) included one grade 5 (neutropenic fever) and five grade 4 events (cytopenias). Cytokine and chemokine data suggest that the combination elicits an immune response. Immunophenotyping of peripheral blood mononuclear cells demonstrated an increase in effector CD8 T-cells in patients with a progression-free survival (PFS) ≥ 6 months. CONCLUSIONS: The addition of P-AscH- to platinum-based chemotherapy improved tumor response in advanced stage NSCLC. P-AscH- appears to alter the host immune response and needs further investigation as a potential adjuvant to immunotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Leukocytes, Mononuclear/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Paclitaxel/therapeutic use , Platinum/therapeutic use
14.
J Leukoc Biol ; 112(3): 457-473, 2022 09.
Article in English | MEDLINE | ID: mdl-35075692

ABSTRACT

Inflammatory agents, microbial products, or stromal factors pre-activate or prime neutrophils to respond to activating stimuli in a rapid and aggressive manner. Primed neutrophils exhibit enhanced chemotaxis, phagocytosis, and respiratory burst when stimulated by secondary activating stimuli. We previously reported that Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) mediates neutrophil effector functions such as increased superoxide generation, transepithelial migration, and chemotaxis. However, it is unclear whether TREM-1 is required for the process of priming itself or for primed responses to subsequent stimulation. To investigate this, we utilized in vitro and in vivo differentiated neutrophils that were primed with TNF-α and then stimulated with the particulate agonist, opsonized zymosan (OpZ). Bone marrow progenitors isolated from WT and Trem-1-/- mice were transduced with estrogen regulated Homeobox8 (ER-Hoxb8) fusion transcription factor and differentiated in vitro into neutrophils following estrogen depletion. The resulting neutrophils expressed high levels of TREM-1 and resembled mature in vivo differentiated neutrophils. The effects of priming on phagocytosis and oxidative burst were determined. Phagocytosis did not require TREM-1 and was not altered by priming. In contrast, priming significantly enhanced OpZ-induced oxygen consumption and superoxide production in WT but not Trem-1-/- neutrophils indicating that TREM-1 is required for primed oxidative burst. TREM-1-dependent effects were not mediated during the process of priming itself as priming enhanced degranulation, ICAM-1 shedding, and IL-1ß release to the same extent in WT and Trem-1-/- neutrophils. Thus, TREM-1 plays a critical role in primed phagocytic respiratory burst and mediates its effects following priming.


Subject(s)
Respiratory Burst , Superoxides , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Animals , Mice , Neutrophils/metabolism , Zymosan/administration & dosage
15.
Water Sci Technol ; 84(9): 2131-2157, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34810302

ABSTRACT

The membrane biofilm reactor (MBfR), which is based on the counter diffusion of the electron donors and acceptors into the biofilm, represents a novel technology for wastewater treatment. When process air or oxygen is supplied, the MBfR is known as the membrane aerated biofilm reactor (MABR), which has high oxygen transfer rate and efficiency, promoting microbial growth and activity within the biofilm. Over the past few decades, laboratory-scale studies have helped researchers and practitioners understand the relevance of influencing factors and biological transformations in MABRs. In recent years, pilot- to full-scale installations are increasing along with process modeling. The resulting accumulated knowledge has greatly improved understanding of the counter-diffusional biological process, with new challenges and opportunities arising. Therefore, it is crucial to provide new insights by conducting this review. This paper reviews wastewater treatment advancements using MABR technology, including design and operational considerations, microbial community ecology, and process modeling. Treatment performance of pilot- to full-scale MABRs for process intensification in existing facilities is assessed. This paper also reviews other emerging applications of MABRs, including sulfur recovery, industrial wastewater, and xenobiotics bioremediation, space-based wastewater treatment, and autotrophic nitrogen removal. In conclusion, commercial applications demonstrate that MABR technology is beneficial for pollutants (COD, N, P, xenobiotics) removal, resource recovery (e.g., sulfur), and N2O mitigation. Further research is needed to increase packing density while retaining efficient external mass transfer, understand the microbial interactions occurring, address existing assumptions to improve process modeling and control, and optimize the operational conditions with site-specific considerations.


Subject(s)
Bioreactors , Water Purification , Biofilms , Membranes, Artificial , Nitrogen , Waste Disposal, Fluid , Wastewater
16.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639049

ABSTRACT

The ability of sodium caprylate and l-menthol to fluidize phospholipid bilayers composed of lipids simulating the buccal epithelium was investigated using electron spin resonance (ESR) to evaluate the action of these agents as permeation enhancers. 5-Doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA) were used as spin labels to identify alterations in membrane fluidity near the polar head groups or inner acyl regions of the lipid bilayer, respectively. The molecular motion of both 5-DSA and 16-DSA showed increased disorder near the polar and inner hydrophobic regions of the bilayer in the presence of sodium caprylate suggesting fluidization in both the regions, which contributes to its permeation enhancing effects. L-menthol decreased the order parameter for 16-DSA, showing membrane fluidization only in the inner acyl regions of the bilayer, which also corresponded to its weaker permeation enhancing effects. The rapid evaluation of changes in fluidity of the bilayer in the presence of potential permeation enhancers using ESR enables improved selection of effective permeation enhancers and enhancer combinations based on their effect on membrane fluidization.


Subject(s)
Caprylates/pharmacology , Electron Spin Resonance Spectroscopy , Membrane Fluidity/drug effects , Menthol/pharmacology , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Cell Membrane Permeability/drug effects , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/pharmacology , Electron Spin Resonance Spectroscopy/methods , Lipid Bilayers , Liposomes , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Phospholipids/chemistry , Phospholipids/metabolism
17.
Redox Biol ; 46: 102073, 2021 10.
Article in English | MEDLINE | ID: mdl-34298465

ABSTRACT

The antioxidant function of the phospholipid hydroperoxide glutathione peroxidase (GPx4) is vital for the homeostasis of many cell types, from neoplastic cells to normal erythroid precursors. However, some functional proteins in erythroid precursors are lost during the development of red blood cells (RBCs); whether GPx4 is maintained as an active enzyme in mature RBCs has remained unclear. Our meta-analyses of existing RBC proteomics and metabolomics studies revealed the abundance of GPx4 to be correlated with lipid-anchored proteins. In addition, GPx4 anti-correlated with lyso-phospholipids and complement system proteins, further supporting the presence of active GPx4 in mature RBCs. To test the potential biological relevance of GPx4 in mature RBCs, we correlated the rate of hemolysis of human RBCs during storage with the abundance of GPx4 and other heritable RBC proteins. Of the molecules that anti-correlated with the rate of hemolysis of RBCs, proteins that mediate the cellular response to hydroperoxides, including GPx4, have the greatest enrichment. Western blotting further confirmed the presence of GPx4 antigenic protein in RBCs. Using an assay optimized to measure the activity of GPx4 in RBCs, we found GPx4 to be an active enzyme in mature RBCs, suggesting that GPx4 protects RBCs from hemolysis during blood bank storage.


Subject(s)
Blood Banks , Hemolysis , Blood Preservation , Erythrocytes , Glutathione Peroxidase/genetics , Humans
18.
Immunohorizons ; 5(6): 477-488, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145054

ABSTRACT

The dysregulated host response and organ damage following systemic infection that characterizes a septic event predisposes individuals to a chronic immunoparalysis state associated with severe transient lymphopenia and diminished lymphocyte function, thereby reducing long-term patient survival and quality of life. Recently, we observed lasting production of reactive oxygen species (ROS) in mice that survive sepsis. ROS production is a potent mechanism for targeting infection, but excessive ROS production can prove maladaptive by causing organ damage, impairing lymphocyte function, and promoting inflammaging, concepts paralleling sepsis-induced immunoparalysis. Notably, we observed an increased frequency of ROS-producing immature monocytes in septic hosts that was sustained for greater than 100 days postsurgery. Recent clinical trials have explored the use of vitamin C, a potent antioxidant, for treating septic patients. We observed that therapeutic vitamin C administration for sepsis limited ROS production by monocytes and reduced disease severity. Importantly, we also observed increased ROS production by immature monocytes in septic patients both at admission and ∼28 days later, suggesting a durable and conserved feature that may influence the host immune response. Thus, lasting ROS production by immature monocytes is present in septic patients, and early intervention strategies to reduce it may improve host outcomes, potentially reducing sepsis-induced immunoparalysis.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Leukocytes, Mononuclear/immunology , Reactive Oxygen Species/metabolism , Sepsis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Case-Control Studies , Disease Models, Animal , Female , Healthy Volunteers , Humans , Leukocytes, Mononuclear/metabolism , Male , Mice , Middle Aged , Reactive Oxygen Species/antagonists & inhibitors , Sepsis/blood , Sepsis/diagnosis , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...