Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 46(2): 1873-1884, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30721421

ABSTRACT

Cancer stem cells show epigenetic plasticity and intrinsic resistance to anti-cancer therapy, rendering capable of initiating cancer relapse and progression. Transcription factor OCT-4 regulates various pathways in stem cells, but its expression can be regulated by pseudogenes. This work evaluated how OCT4-PG1 pseudogene can affect OCT-4 expression and mechanisms related to the multidrug resistance (MDR) phenotype in FEPS cells. Considering that OCT-4 protein is a transcription factor that regulates expression of ABC transporters, level of gene expression, activity of ABC proteins and cell sensitivity to chemotherapy were evaluated after OCT4-PG1 silencing. Besides we set up a STRING network. Results showed that after OCT4-PG1 silencing, cells expressed OCT-4 gene and protein to a lesser extent than mock cells. The gene and protein expression of ABCB1, as well as its activity were reduced. On the other hand, ALOX5 and ABCC1 genes was increased even as the activity of this transporter. Moreover, the silencing cells become sensitive to two chemotherapics tested. The network structure demonstrated that OCT4-PG1 protein interacts directly with OCT-4, SOX2, and NANOG and indirectly with ABC transporters. We conclude that OCT4-PG1 pseudogene plays a key role in the regulation OCT-4 transcription factor, which alters MDR phenotype in the FEPS cell line.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Octamer Transcription Factor-3/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP-Binding Cassette Transporters/genetics , Arachidonate 5-Lipoxygenase/metabolism , Cell Line, Tumor , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Embryonic Stem Cells/metabolism , Gene Expression , Gene Silencing/physiology , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Neoplastic Stem Cells/metabolism , Phenotype , Pseudogenes , SOXB1 Transcription Factors/metabolism
2.
Cell Biol Int ; 43(2): 214-219, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30597722

ABSTRACT

Chemotherapy may be followed by multiple drug resistance (MDR). This is an obstacle in the treatment of cancer. It is therefore essential to understand the mechanisms underlying tumor resistance, especially those involved in the cell target/MDR relationship. To investigate this, the effects of exposing cells to UVB (to target DNA), UVA, and H2 O2 (to target the cell membrane) were observed in K562 (non MDR) and FEPS (MDR) cell lines. The K562 cells were more sensitive to UVA than the FEPS cells. The FEPS cell line was more resistant to H2 O2 than K562, only presenting cytotoxicity 72 h after being exposed to 40 mM, with no ROS increase until 48 h. Both cell lines were sensitive to UVB, presenting cytotoxicity after 24 h, mainly by apoptosis, and showed an increase in ROS levels. Our results indicate that agents acting on DNA may be able to overcome the MDR phenotype.


Subject(s)
Apoptosis/drug effects , Drug Resistance, Neoplasm , Hydrogen Peroxide/pharmacology , Ultraviolet Rays , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/pathology , Phenotype , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...