Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 18(6): e1010171, 2022 06.
Article in English | MEDLINE | ID: mdl-35737648

ABSTRACT

Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.


Subject(s)
COVID-19 , Epidemics , Mobile Applications , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Epidemics/prevention & control , Humans , New York City
2.
Immunotargets Ther ; 9: 299-316, 2020.
Article in English | MEDLINE | ID: mdl-33294421

ABSTRACT

BACKGROUND: Yersinia pestis is a category A infective agent that causes bubonic, septicemic, and pneumonic plague. Notably, the acquisition of antimicrobial or multidrug resistance through natural or purposed means qualifies Y. pestis as a potential biothreat agent. Therefore, high-quality antibodies designed for accurate and sensitive Y. pestis diagnostics, and therapeutics potentiating or replacing traditional antibiotics are of utmost need for national security and public health preparedness. METHODS: Here, we describe a set of human monoclonal immunoglobulins (IgG1s) targeting Y. pestis fraction 1 (F1) antigen, previously derived from in vitro evolution of a phage-display library of single-chain antibodies (scFv). We extensively characterized these antibodies and their effect on bacterial and mammalian cells via: ELISA, flow cytometry, mass spectrometry, spectroscopy, and various metabolic assays. RESULTS: Two of our anti-F1 IgG (αF1Ig 2 and αF1Ig 8) stood out for high production yield, specificity, and stability. These two antibodies were additionally attractive in that they displayed picomolar affinity, did not compete when binding Y. pestis, and retained immunoreactivity upon chemical derivatization. Most importantly, these antibodies detected <1,000 Y. pestis cells in sandwich ELISA, did not harm respiratory epithelial cells, induced Y. pestis agglutination at low concentration (350 nM), and caused apparent reduction in cell growth when radiolabeled at a nonagglutinating concentration (34 nM). CONCLUSION: These antibodies are amenable to the development of accurate and sensitive diagnostics and immuno/radioimmunotherapeutics.

3.
Dalton Trans ; 49(30): 10452-10462, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32678407

ABSTRACT

Changes in chemical speciation of uranium oxides following storage under varied conditions of temperature and relative humidity are valuable for characterizing material provenance. In this study, subsamples of high purity α-UO3 were stored under four sets of controlled conditions of temperature and relative humidity over several years, and then measured periodically for chemical speciation. Powder X-ray diffraction (XRD) analysis and extended X-ray absorption fine structure spectroscopy confirm hydration of α-UO3 to a schoepite-like end product following storage under each of the varied storage conditions, but the species formed during exposure to the lower relative humidity and lower temperature condition follows different trends from those formed under the other three storage conditions (high relative humidity with high or low temperatures, and low relative humidity with a high temperature). Thermogravimetry coupled with XRD analysis was carried out to distinguish desorption pathways of water from the hydrated end products. Density functional theory calculations discern changes in the structure of α-UO3 following incorporation of 1, 2 or 3 H2O molecules or 1, 2 or 3 OH groups into the orthorhombic lattice, revealing differences in lattice constants, U-O bond lengths, and U-U distances. The collective results from this analysis are in contrast to analogous studies that report that U3O8 is oxidized and hydrated in air during storage under high relative humidity conditions.

4.
Chem Sci ; 8(9): 6076-6091, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989638

ABSTRACT

The isolation of [K(2.2.2-cryptand)][Ln(C5H4SiMe3)3], formally containing LnII, for all lanthanides (excluding Pm) was surprising given that +2 oxidation states are typically regarded as inaccessible for most 4f-elements. Herein, X-ray absorption near-edge spectroscopy (XANES), ground-state density functional theory (DFT), and transition dipole moment calculations are used to investigate the possibility that Ln(C5H4SiMe3)31- (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb and Lu) compounds represented molecular LnII complexes. Results from the ground-state DFT calculations were supported by additional calculations that utilized complete-active-space multi-configuration approach with second-order perturbation theoretical correction (CASPT2). Through comparisons with standards, Ln(C5H4SiMe3)31- (Ln = Sm, Tm, Yb, Lu, Y) are determined to contain 4f6 5d0 (SmII), 4f13 5d0 (TmII), 4f14 5d0 (YbII), 4f14 5d1 (LuII), and 4d1 (YII) electronic configurations. Additionally, our results suggest that Ln(C5H4SiMe3)31- (Ln = Pr, Nd, Gd, Tb, Dy, Ho, and Er) also contain LnII ions, but with 4f n 5d1 configurations (not 4f n+1 5d0). In these 4f n 5d1 complexes, the C3h-symmetric ligand environment provides a highly shielded 5d-orbital of a' symmetry that made the 4f n 5d1 electronic configurations lower in energy than the more typical 4f n+1 5d0 configuration.

5.
Nanoscale ; 8(41): 17788-17793, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27714225

ABSTRACT

Herein we report a new design for acoustic nanoswimmers, making use of a nanoshell geometry that was synthesized using a sphere template process. Such shell-shaped nanomotors display highly efficient acoustic propulsion on the nanoscale by converting energy from the ambient acoustic field into motion. The propulsion mechanism of the nanoshell motors relies on acoustic streaming stress over the asymmetric surface to produce the driving force for motion. The shell-shaped nanomotors offer a high surface area to volume ratio, allow for efficient scalability and provide higher cargo towing capacity (in comparison to acoustically propelled nanowires). Furthermore, a detailed study of the parameters relevant to propulsion performance, including the material density, size and shape of the motors, reveals that the nanoshell motors exhibit a different propulsion behavior from that predicted by recent theoretical and experimental models for acoustically propelled nanomotors. Such findings indicate that further studies are needed to predict the behavior of acoustic nanomotors with different geometry designs. Practical applications of the new nanoshell motors, including "on-the-move" capture and the transport of multiple cargoes and internalization and movement inside live MCF-7 cancer cells, are demonstrated. These capabilities hold considerable promise for designing fuel-free nanoswimmers capable of performing complex tasks for diverse biomedical applications.

6.
J Am Chem Soc ; 137(14): 4690-700, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25830409

ABSTRACT

The electronic structures of a series of highly reduced uranium complexes bearing the redox-active pyridine(diimine) ligand, (Mes)PDI(Me) ((Mes)PDI(Me) = 2,6-(2,4,6-Me3-C6H2-N═CMe)2C5H3N) have been investigated. The complexes, ((Mes)PDI(Me))UI3(THF) (1), ((Mes)PDI(Me))UI2(THF)2 (2), [((Mes)PDI(Me))UI]2 (3), and [((Mes)PDI(Me))U(THF)]2 (4), were examined using electronic and X-ray absorption spectroscopies, magnetometry, and computational analyses. Taken together, these studies suggest that all members of the series contain uranium(IV) centers with 5f (2) configurations and reduced ligand frameworks, specifically [(Mes)PDI(Me)](•/-), [(Mes)PDI(Me)](2-), [(Mes)PDI(Me)](3-) and [(Mes)PDI(Me)](4-), respectively. In the cases of 2, 3, and 4 no unpaired spin density was found on the ligands, indicating a singlet diradical ligand in monomeric 2 and ligand electron spin-pairing through dimerization in 3 and 4. Interaction energies, representing enthalpies of dimerization, of -116.0 and -144.4 kcal mol(-1) were calculated using DFT for the monomers of 3 and 4, respectively, showing there is a large stabilization gained by dimerization through uranium-arene bonds. Highlighted in these studies is compound 4, bearing a previously unobserved pyridine(diimine) tetraanion, that was uniquely stabilized by backbonding between uranium cations and the η(5)-pyridyl ring.


Subject(s)
Dimerization , Electrons , Organometallic Compounds/chemistry , Pyridines/chemistry , Uranium/chemistry , Ligands , Magnetic Phenomena , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Quantum Theory
7.
Anal Chem ; 87(8): 4210-7, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25786096

ABSTRACT

Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.

8.
J Theor Biol ; 324: 42-51, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23419503

ABSTRACT

Fluid-based locomotion at low Reynolds number is subject to the constraints of the scallop theorem, which dictate that body kinematics identical under a time-reversal symmetry (in particular, those with a single degree of freedom) cannot display locomotion on average. The implications of the theorem naturally compel one to ask whether similar symmetry constraints exist for locomotion in different environments. In this work we consider locomotion along a surface where forces are described by isotropic Coulomb friction. To address whether motions with a single degree of freedom can lead to transport, we analyze a model system consisting of two bodies whose separation distance undergoes periodic time variations. The behavior of the two-body system is entirely determined by the kinematic specification of their separation, the friction forces, and the mass of each body. We show that the constraints of the scallop theorem can be escaped in frictional media if two asymmetry conditions are met at the same time: the frictional forces of each body against the surface must be distinct and the time-variation of the body-body separation must vary asymmetrically in time (so quick-slow or slow-quick in the extension-contraction phases). Our results are demonstrated numerically and interpreted using asymptotic expansions.


Subject(s)
Friction , Locomotion , Models, Biological , Animals , Biomechanical Phenomena
9.
J Am Chem Soc ; 135(5): 1864-71, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23351138

ABSTRACT

Advancing theories of how metal-oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal MO(4)(x-) anions have formed the basis for new M-O bonding theories. Herein, relative changes in M-O orbital mixing in MO(4)(2-) (M = Cr, Mo, W) and MO(4)(-) (M = Mn, Tc, Re) are evaluated for the first time by nonresonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and time-dependent density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M-O e* (π*) mixing; for example, it more than doubles in ReO(4)(-) relative to CrO(4)(2-). Mixing in the t(2)* orbitals (σ* + π*) remains relatively constant within the same Group, but increases on moving from Group 6 to Group 7. These unexpected changes in orbital energy and composition for formally isoelectronic tetraoxometalates are evaluated in terms of periodic trends in d orbital energy and radial extension.


Subject(s)
Electrons , Metals, Heavy/chemistry , Oxygen/chemistry , Quantum Theory , Microscopy, Electron, Scanning Transmission , Molecular Structure , X-Ray Absorption Spectroscopy , X-Rays
10.
Bioresour Technol ; 119: 174-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22728198

ABSTRACT

Manganese acetate was found to catalyze the oxidative delignification of wood with hydrogen peroxide at room temperature. The delignification reaction was monitored by optical and Raman microscopy, and liquid chromatography/mass spectrometry. When exposed to H(2)O(2) and Mn(OAc)(3) in aqueous solution, poplar wood sections were converted into a fine powder-like material which consisted of individual wood cells within 4 days at room temperature and without agitation. Optical and Raman microscopy provided the spatial distribution of cellulose and lignin in the wood structure, and showed the preferential oxidation of lignin-rich middle lamellae. Raman spectra from the solid residue revealed a delignified and cellulose-rich material. Glucose yields following enzymatic hydrolysis were 20-40% higher in poplar sawdust pretreated with Mn(OAc)(3) for 2, 4, and 7 days at room temperature than those in sawdust exposed to water only for identical durations, suggesting the viability of this mild, inexpensive method for pretreatment of lignocellulosic biomass.


Subject(s)
Acetates/chemistry , Hydrogen Peroxide/chemistry , Lignin/chemistry , Lignin/isolation & purification , Manganese Compounds/chemistry , Populus/chemistry , Wood/chemistry , Catalysis , Oxidation-Reduction , Temperature
11.
J Am Chem Soc ; 134(12): 5586-97, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22404133

ABSTRACT

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

12.
ACS Appl Mater Interfaces ; 2(8): 2198-205, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20735091

ABSTRACT

Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mum. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities.


Subject(s)
Biofuels , Imidazoles/chemistry , Nanoparticles , Populus/chemistry , Temperature , Electron Probe Microanalysis , Fluorescence , Lignin/chemistry , Microscopy, Electron, Scanning , Paper , Silver Sulfadiazine/chemistry , Solvents/chemistry , Spectrum Analysis, Raman , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...